
ESSENTIALS

MAKE

W
ITH

GAMES
PYTHON

CREATE YOUR OWN
 ENTERTAINMENT WITH

Raspberry Pi
Written by Sean M. Tracey

100
PAGES OF
HACKING
& MAKING

Number one for Raspberry Pi raspberrypi.org/magpi

SUBSCRIBE

£13 / $37.50

raspberrypi.org/magpi

TODAY FROM

http://www.raspberrypi.org/magpi

3 [Chapter One]

EDITORIAL
Managing Editor: Russell Barnes
russell@raspberrypi.org
Technical Editor: David Whale
Sub Editors: Lorna Lynch (with Laura Clay & Phil King)

DESIGN
Critical Media: criticalmedia.co.uk
Head of Design: Dougal Matthews
Designers: Lee Allen, Mike Kay

The MagPi magazine is published by Raspberry Pi (Trading) Ltd., Mount Pleasant House, Cambridge,
CB3 0RN. The publisher, editor and contributors accept no responsibility in respect of any omissions
or errors relating to goods, products or services referred to or advertised in the magazine. Except
where otherwise noted, content in this magazine is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0). ISSN: 2051-9982.

GET IN TOUCH magpi@raspberrypi.orgFIND US ONLINE raspberrypi.org/magpi

In print, this product is made using paper
sourced from sustainable forests and
the printer operates an environmental
management system which has been
assessed as conforming to ISO 14001.

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave,
London
EC1A 9PT | +44 (0)207 429 4000

SUBSCRIPTIONS
Select Publisher Services Ltd
PO Box 6337
Bournemouth
BH1 9EH | +44 (0)1202 586 848

hile countless millions of us take great
pleasure spending hours racking up high
scores in our favourite games, few of us are

ever exposed to the delights of making them in the
first place. It’s far from easy, but learning to code
your own shoot-’em-up is infinitely more satisfying
than beating any end-of-level boss.

Although this book is designed to help you learn
many of the essential skills you’ll need to make
games with Python and Pygame on your Raspberry
Pi, it’s by no means definitive. Frankly, you could
read a dozen books on the subject and still not have
the skills you need to succeed. As with most things,
nothing replaces good old-fashioned practice. I
should know: I have 30 cookery books lining my shelf
and I still burnt my toast this morning.

Making games is a brilliant way to learn to code,
though, so I hope this book helps you to get started
on your next big adventure.

Russell Barnes
 Managing Editor, Raspberry Pi

WELCOME TO
MAKE GAMES
WITH PYTHON

W

mailto:russell@raspberrypi.org
http://criticalmedia.co.uk
mailto: magpi@raspberrypi.org
http://raspberrypi.org/magpi
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://https://itunes.apple.com/us/app/the-magpi-magazine/id972033560?ls=1&mt=8
http://https://play.google.com/store/apps/details?id=com.raspberry.magpi

4

 [CONQUER THE COMMAND LINE]

4[Contents]

CONTENTS

ESSENTIALS

[SEAN M.
TRACEY]

Sean calls
himself a
technologist,
which is a fancy
way of saying
he still hasn’t
decided what he
wants to do with
technology –
other than
everything.
Sean has spent
his career trying
to avoid getting
‘proper’ jobs, and
as such has had
a hand in making
a variety of fun
and interesting
projects, including
a singing statue
of Lionel Richie,
wearable drum
kits, chopstick
bagpipes, time-
telling hats, and
a life-sized Elvis
Presley robot, to
name only a few.
sean.mtracey.org

05 [CHAPTER ONE]
SHAPES & PATHS
WITH PYGAME

18 [CHAPTER TWO]
ANIMATING
SHAPES & PATHS

28 [CHAPTER THREE]
TAKING CONTROL OF
THE KEYBOARD & MOUSE

42 [CHAPTER FOUR]
YOUR FIRST GAME

56 [CHAPTER FIVE]
PYGAME SOUNDBOARD

68 [CHAPTER SIX]
PHYSICS & FORCES

80 [CHAPTER SEVEN]
PHYSICS & COLLISIONS

94 [CHAPTER EIGHT]
BUILDING CLASSES

114 [CHAPTER NINE]
THE ALIENS ARE
TRYING TO KILL ME!

130 [CHAPTER TEN]
THE ALIENS ARE HERE &
THEY’RE COMING IN WAVES!

http://sean.mtracey.org

5

ESSENTIALS

[Chapter One]

[CHAPTER ONE]
SHAPES & PATHS
WITH PYGAME

[Chapter One]

ESSENTIALS

We are going to learn how to make a game on our
Raspberry Pi from the ground up. In the first chapter, we
learn the basics.

5

6[Shapes & Paths with Pygame]

 [MAKE GAMES WITH PYTHON]

6

[CHAPTER ONE]
SHAPES & PATHS
WITH PYGAME

n this book, we are going to learn to make games on the
Raspberry Pi with Pygame. We’ll look at drawing, animation,
keyboard and mouse controls, sound, and physics. Each

chapter will add to our knowledge of Raspberry Pi game development,
allowing us both to understand the games we play, and to create almost
anything our imaginations can come up with.

This book isn’t for absolute programming beginners, but it’s not
far from it: we’re going to assume that you’ve written some simple
Python (or similar) programs in the past, and are able to do things like
creating files and get around your Pi’s filesystem without too much
difficulty. If you haven’t set up your Pi and are a little lost on how to
go about it, there are lots of easy-to-follow guides on the web which
will help bring you up to speed. You could point your web browser to
raspberrypi.org/resources to get started.

In the first chapter, we’re going to look at drawing and colouring
various shapes in a window. This isn’t quite Grand Theft Auto V,
admittedly, but drawing shapes is the first step in building just
about anything.

To start off, open your preferred text editor, create a new file, insert
the following code into it and save it as hello.py: Let’s run that code
and see what it does. In your terminal window, enter python hello.
py. If all has gone well, a new window will have opened showing you a

I

import pygame

pygame.init()

window = pygame.display.set_mode((500, 400))

while True:

 pygame.draw.rect(window, (255,0,0),
 (0, 0, 50, 30))

 pygame.display.update()

Download
magpi.cc/
1jQhJYe

http://magpi.cc/1jQhJYe

ESSENTIALS

7 [Chapter One]

Left Here we can
see how each
variable in window
affects the
application
window’s shape
and size. Width
always comes
before height

window

500px

40
0p

x
window = pygame.display.set_mode((500,400))

pygame.display.rect(window,(255,0,0),(100,100,50,50))

pygame.display.rect(window,(0,255,0),(200,150,50,50))

pygame.display.rect(window,(0,0,255),(300,200,50,50))

100, 100

200, 150

300, 200

pygame.draw.line(window,(255,255,255),(50,50),(75,75),1)

pygame.draw.line(window,(255,255,255),(75,75),(25,75),1)

pygame.draw.line(window,(255,255,255),(25,75),(50,50),1)

50, 50

25, 75 75, 75

pygame.draw.line(window,(255,255,255),True,((50,50),(75,75),(25,75)),1)

pygame.draw.circle(window,(255,255,0),(250,200),20,1)

20px

250,200

red square on a black background in the top-left corner of the window.
We’ve just created our first Pygame program: let’s walk through it.

Understanding hello.py
The first two lines of our first program are very simple: all we’ve done
is told Python that we want to use Pygame. import pygame loads all
of the Pygame code into our script, so we don’t have to write all of that
code ourselves. Pygame is designed to make the creation of games and
interactive software easy. pygame.init() tells Pygame that we’re
ready to start using it.

Let’s look at the third line of code:

window = pygame.display.set_mode((500, 400))

window is the parameter we’re going to use to tell our Pygame
program about how it should look when it runs; each parameter affects
the application window’s shape and size. Note that here, width always
comes before height. window is also the parameter that we’ll use to
tell other lines of code the surface on which they should draw shapes

8[Shapes & Paths with Pygame]

and set colours. With window, we’re calling the set_mode function
of Pygame’s display module: the latter is responsible for how the
game window and surface (an informal term for the pixels we’ll be
manipulating) behaves. We’re passing a tuple (which we can think
of as a special list of things - in this case, a list of numbers) to set_
mode() to tell it how big we want our game window to be. In this case,
the application window is 500 pixels wide by 400 pixels tall. If we pass
numbers that are bigger, the game window will be bigger; if we pass
numbers that are smaller, the game window will be smaller.

The next few lines are where we make our program draw shapes on
that window. When programs run, they execute their code, and when
they’re finished, they close themselves. That’s fine unless, of course,
you want your program to be interactive, or to draw or animate shapes
over time, which is exactly what we need from a game. So, in order to
keep our program from exiting, we make a while loop and put all our
code inside. The while loop will never finish because True is always
True, so we can keep running our program and drawing our shapes for
as long as we like.

The first thing we do in our while loop is draw a rectangle. A
rectangle is the simplest shape that we can draw in Pygame:

pygame.draw.rect(window, (255,0,0), (0,0,50,30))

The parameters at the end are telling Pygame where we want to draw
our rectangle, the colour we want our rectangle to be, how we want to
draw it, and how big we want it to be.

In our hello.py program, we’ve told Pygame to draw a rectangle
in our window – or, at least, the surface we create with our window
parameter. Next, we told Pygame what colour we wanted our
rectangle to be by passing it through a tuple (a special list of numbers)
representing how much red, green, and blue the final colour should
have in it. We use red, green, and blue as these are the three colours
your screen combines to create every shade you can see on it. 0 means
that none of that colour should be used in the shape; 255 means that
the maximum amount of colour should be in that shape. We told our
rectangle that it should be the colour (255, 0, 0), which is pure red.

Pygame is
installed on
Raspbian by
default. Find
documentation
detailing all
its features at
pygame.org/docs

[PYGAME]

 [MAKE GAMES WITH PYTHON]

http://pygame.org/docs

ESSENTIALS

9 [Chapter One]

If we had told it to be (255, 0, 255), it would have been a bright
purple, because it’s being drawn with the maximum amount of red
and the maximum amount of blue. If we had told our rectangle to be
coloured (100, 100, 100), it would be a dark grey, because all of the
colours would be equal.

After we’ve passed through a colour for our rectangle to be, we have
to tell it where it should go and how big it should be. We do this by
passing a tuple of four numbers. The first number is an X coordinate,
which set out how far from the left side of the window the left edge of
our rectangle should be. The second number is a Y coordinate; this tells
the rectangle how far from the top of our window the top edge it should
sit. The third number gives the width of our rectangle, and the fourth
number defines its height. So, for example, if we wanted our rectangle
to be 50 pixels from the left side of the window, 100 pixels from the top
of our window, 20 pixels wide and 80 pixels tall, we would pass
(50, 100, 20, 80) to pygame.draw.rect().

Please note that the order never changes. If you tell Pygame how big
you want the rectangle to be when it’s expecting a colour or vice versa,
the program may crash, so take your time.

Our last line in hello.py is nice and simple: it tells Pygame that
we’re done drawing shapes for
the moment and that it can now
refresh the window. This saves
our Pi having to draw and redraw
the screen for every shape that
we’ve created; instead, it can get
them all drawn in one go.

Adding more shapes
We’ve successfully drawn one
shape, so let’s draw a few more.
We’ll draw some squares around
the screen and mess around
with their properties a little bit.
There’s no need to create a new
file, so we’ll stick with hello.py
for now. Edit the while loop so
it’s the same as the following:

window

500px

40
0p

x

window = pygame.display.set_mode((500,400))

pygame.display.rect(window,(255,0,0),(100,100,50,50))

pygame.display.rect(window,(0,255,0),(200,150,50,50))

pygame.display.rect(window,(0,0,255),(300,200,50,50))

100, 100

200, 150

300, 200

pygame.draw.line(window,(255,255,255),(50,50),(75,75),1)

pygame.draw.line(window,(255,255,255),(75,75),(25,75),1)

pygame.draw.line(window,(255,255,255),(25,75),(50,50),1)

50, 50

25, 75 75, 75

pygame.draw.line(window,(255,255,255),True,((50,50),(75,75),(25,75)),1)

pygame.draw.circle(window,(255,255,0),(250,200),20,1)

20px

250,200

Below Here’s a
clear look at what

each variable
does to the shape

we’re drawing

10

 [MAKE GAMES WITH PYTHON]

[Shapes & Paths with Pygame]

while True:

 pygame.draw.rect(window, (255,0,0),
 (100, 100, 50, 50))
 pygame.draw.rect(window, (0,255,0),
 (150, 100, 50, 50))
 pygame.draw.rect(window, (0,0,255),
 (200, 100, 50, 50))

 pygame.display.update()

Now we should have three squares: red, blue, and green. So far, this
is nice and simple, but those squares are placed right next to each
other. What would happen if they were to overlap? Let’s find out.
Change your code once more to the following:

while True:

 pygame.draw.rect(window, (255,0,0),
 (0, 0, 50, 50))
 pygame.draw.rect(window, (0,255,0),
 (40, 0, 50, 50))
 pygame.draw.rect(window, (0,0,255),
 (80, 0, 50, 50))

 pygame.display.update()

This time we get two rectangles and a square, but that is not what
we asked for. So, what has gone wrong? When we execute our code,
it works through what it has to draw, and where it has to put it,
line-by-line. If one item is drawn and then another is drawn
over it or on top of part of it, then we can no longer see what’s
beneath that second shape. The pixels of the shape drawn first

When drawing
a rectangle
or ellipse, you
have the choice
of passing a
line width. If
you don’t, the
shape will be
filled solid.

[LINE
WIDTH]

11

ESSENTIALS

[Chapter One]11 [Chapter One]

are lost when we overlap it with another shape. If we change
the order of our code, we can see this effect in action. Cut and
paste the code for the second square so that it becomes the
third square drawn, like so:

while True:

 pygame.draw.rect(window, (255,0,0),
 (0, 0, 50, 50))
 #pygame.draw.rect(window, (0,255,0),
 #(40, 0, 50, 50))FROM HERE
 pygame.draw.rect(window, (0,0,255),
 (80, 0, 50, 50))
 pygame.draw.rect(window, (0,255,0),
 (40, 0, 50, 50)) #TO HERE

 pygame.display.update()

Now we the code apparently produces rectangle, square, rectangle.
This is because the red and blue squares were drawn first and then
the green square was drawn over the top of them. The red and
blue squares re still there in their entirety, but we can’t see all of
them, so they look like rectangles.

Pygame allows us to do a great deal more than merely draw
rectangles: we can make all kinds of other shapes too, including
circles, ellipses, and paths (which are made up of many lines
between multiple points).

Drawing circles
The process of drawing a circle is much like drawing a square
except that, instead of passing a width and a height, we pass
a radius and a point, around which we draw our circle. So, for
example, if we wanted to draw a yellow circle in the middle
of our window with a diameter of 40 pixels, we would use the
following code to replace the code in the original while loop
in hello.py:

12

 [MAKE GAMES WITH PYTHON]

while True:

 #Just like before to help us remember
 #pygame.draw.circle(WHERE TO DRAW, (RED, GREEN,
BLUE), (X COORDINATE, Y COORDINATE), RADIUS, HEIGHT,
WIDTH)

 pygame.draw.circle(window, (255,255,0),
 (250, 200), 20, 0)

 pygame.display.update()

Just like drawing a rectangle, we tell Pygame on which surface we want to
draw our circle, what colour we want it to be, and where it should go. The
radius is specific to drawing this particular shape. You might have noticed

window

500px

40
0p

x

window = pygame.display.set_mode((500,400))

pygame.display.rect(window,(255,0,0),(100,100,50,50))

pygame.display.rect(window,(0,255,0),(200,150,50,50))

pygame.display.rect(window,(0,0,255),(300,200,50,50))

100, 100

200, 150

300, 200

pygame.draw.line(window,(255,255,255),(50,50),(75,75),1)

pygame.draw.line(window,(255,255,255),(75,75),(25,75),1)

pygame.draw.line(window,(255,255,255),(25,75),(50,50),1)

50, 50

25, 75 75, 75

pygame.draw.line(window,(255,255,255),True,((50,50),(75,75),(25,75)),1)

pygame.draw.circle(window,(255,255,0),(250,200),20,1)

20px

250,200

 [MAKE GAMES WITH PYTHON]

Left Here’s how the
variables enable
you to
draw a circle

[Shapes & Paths with Pygame]

13

ESSENTIALS

[Chapter One]13 [Chapter One]

that we put a 0 after our radius; this is a value used to determine the width
of the line that draws our circle. If we pass 0, the circle is filled; but if we
pass 2, for instance, we get a 2-pixel-wide line with an empty centre:

while True:

 #Filled
 pygame.draw.circle(window,(255,255,0),
 (200, 200), 20, 0)

 #Not filled
 pygame.draw.circle(window,(255,255,0),
 (300, 200), 20, 2)

 pygame.display.update()

What about ellipses? They are a slightly strange cross between
drawing rectangles and circles. As we did when we drew a rectangle, we
pass an X coordinate, a Y coordinate, a width, and a height, but we end
up with an elliptical shape. Let’s draw an ellipse or two.

while True:

 pygame.draw.ellipse(window, (255, 0, 0),
 (100, 100, 100, 50))
 pygame.draw.ellipse(window, (0, 255, 0),
 (100, 150, 80, 40))
 pygame.draw.ellipse(window, (0, 0, 255),
 (100, 190, 60, 30))

 pygame.display.update()

Just as before, run your code. You should now see three ellipses: one red,
one green, and one blue. Each should be a different size. If you wanted to

14

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

visualise how these shapes were generated, you could draw
rectangles using the same coordinates as you used to draw an ellipse
and it would fit perfectly inside that box. As you may have guessed, this
means you can also make circles by using pygame.draw.ellipse if the
width and height parameters are the same.

while True:

 pygame.draw.rect(window, (255, 0, 0),
 (100, 100, 100, 50), 2)
 pygame.draw.ellipse(window, (255, 0, 0),
 (100, 100, 100, 50))

 pygame.draw.rect(window, (0, 255, 0),
 (100, 150, 80, 40), 2)
 pygame.draw.ellipse(window, (0, 255, 0),
 (100, 150, 80, 40))

 pygame.draw.rect(window, (0, 0, 255),
 (100, 190, 60, 30), 2)
 pygame.draw.ellipse(window, (0, 0, 255),
 (100, 190, 60, 30))

 #Circle
 pygame.draw.ellipse(window, (0, 0, 255),
 (100, 250, 40, 40))

 pygame.display.update()

A new path
We have covered rectangles, squares and circles, but what if we want to
draw a triangle, a pentagon, a hexagon or an octagon? Unfortunately,
there aren’t functions for every kind of shape, but we can use paths.
Paths allow us to draw irregular shapes by defining points in space,
joining them up with lines, and filling in the space we’ve created.
This is a little more complex, so it’s time to move on from our original

A tuple is like a
list, but unlike a
standard list, a
tuple’s contents
can’t be changed
(it’s immutable).
python.org/docs

[TUPLE]

[Shapes & Paths with Pygame]

http://python.org/docs

15

ESSENTIALS

[Chapter One]15 [Chapter One]

hello.py program. Create a new file, call it paths.py, and save it
with the following text inside:

import pygame

pygame.init()
window = pygame.display.set_mode((500, 400))

while True:
 pygame.display.update()

This is simply our bare-bones Pygame app again. If you want to make a
copy of this for experimenting without breaking anything, now would
be a good time to do so.

Every path is made of connected lines, but, before we start joining
things up, let’s draw a couple of standalone lines to familiarise
ourselves with them. We can do this with pygame.draw.line(). Edit
paths.py so your while loop reads as follows:

while True:

 pygame.draw.line(window, (255,255,255),
 (0, 0), (500, 400), 1)

 pygame.display.update()

Right When
drawing a circle,
the last variable

lets us know if the
circle should be

filled in or not

Far Right Ellipses
in the rectangles
that bound them

16

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

If you run this code now, you’ll see a one-pixel-wide white line going
from the top left to the bottom right of our Pygame window. The
parameters we pass to pygame.draw.line start off the same way
rectangles and ellipses do. We first tell Pygame where we want to draw
the shape and then we choose a colour. Now, things change a little.
The next argument is a tuple with the X and Y coordinates for where
we want our line to start, and the third argument is a tuple with the X
and Y coordinates for where we want our line to end. These are the two
points between which our line will be drawn. The final argument is the
width of the line is being drawn in pixels.

With this, we can now create shapes by defining points in our
window. Let’s draw that triangle we talked about earlier:

while True:
 pygame.draw.line(window, (255,255,255),
 (50, 50), (75, 75), True)
 pygame.draw.line(window, (255,255,255),
 (75, 75), (25, 75), True)
 pygame.draw.line(window, (255,255,255),
 (25, 75), (50, 50), True)

 pygame.display.update()

You should have an image of a white triangle with a 1px edge. However,
this code is rather lengthy: so many things, like the colour or the
width of the line, are written multiple times. There is, however, a more
concise way to achieve the result we want. All we need is pygame.
draw.lines().Whereas pygame.draw.line() lets us draw a line
between two points, pygame.draw.lines() enables us to draw a
sequence of lines between numerous points. Each XY-coordinate point
will be joined up to the next XY-coordinate point, which will be joined
up to the next XY-coordinate point, and so on.

After running the code on the next page, you’ll see that the resulting
triangle is exactly the same, except that we produced it from one line
of code instead of three. You might have noticed that we didn’t actually
close the triangle: Pygame did it for us. Just before we pass the points

[Shapes & Paths with Pygame]

17

ESSENTIALS

[Chapter One]17 [Chapter One]

for our shape to be drawn from, we can pass either a True of a False
value that will let Pygame know that we want it to close our shapes for
us. Change it to False and we get the first two lines of our shape, but
not the third. If we want to make a more complex shape, we simply add
more points like so:

while True:

 #pygame.draw.lines(WHERE TO DRAW, COLOUR, CLOSE THE
SHAPE FOR US?, THE POINTS
TO DRAW, LINE WIDTH)

 pygame.draw.lines(window,(255,255,255), True, ((
50, 50), (75, 75), (63, 100), (38, 100), (25, 75)), 1)

 pygame.display.update()

There you have it: your very own pentagon. If you want to make a
hexagon, an octagon, or even a triacontagon, just add more points - it’s
that easy. Why not try experimenting with Pygame to produce some
interesting pixel art?

Above Right This
triangle is made

up of one line with
multiple points.

Follow the colours
to see which

variable is which

window

500px

40
0p

x

window = pygame.display.set_mode((500,400))

pygame.display.rect(window,(255,0,0),(100,100,50,50))

pygame.display.rect(window,(0,255,0),(200,150,50,50))

pygame.display.rect(window,(0,0,255),(300,200,50,50))

100, 100

200, 150

300, 200

pygame.draw.line(window,(255,255,255),(50,50),(75,75),1)

pygame.draw.line(window,(255,255,255),(75,75),(25,75),1)

pygame.draw.line(window,(255,255,255),(25,75),(50,50),1)

50, 50

25, 75 75, 75

pygame.draw.line(window,(255,255,255),True,((50,50),(75,75),(25,75)),1)

pygame.draw.circle(window,(255,255,0),(250,200),20,1)

20px

250,200

Above You can
make a triangle

from three
separate lines

window

500px

40
0p

x

window = pygame.display.set_mode((500,400))

pygame.display.rect(window,(255,0,0),(100,100,50,50))

pygame.display.rect(window,(0,255,0),(200,150,50,50))

pygame.display.rect(window,(0,0,255),(300,200,50,50))

100, 100

200, 150

300, 200

pygame.draw.line(window,(255,255,255),(50,50),(75,75),1)

pygame.draw.line(window,(255,255,255),(75,75),(25,75),1)

pygame.draw.line(window,(255,255,255),(25,75),(50,50),1)

50, 50

25, 75 75, 75

pygame.draw.line(window,(255,255,255),True,((50,50),(75,75),(25,75)),1)

pygame.draw.circle(window,(255,255,0),(250,200),20,1)

20px

250,200

18

 [MAKE GAMES WITH PYTHON]

ESSENTIALS

In chapter two, we’ll learn how to move shapes around the screen
in different directions and patterns, and at different speeds.

 [MAKE GAMES WITH PYTHON]

18[Animating Shapes & Paths]

[CHAPTER TWO]

ANIMATING
SHAPES & PATHS

19

ESSENTIALS

[Chapter One]19 [Chapter Two]

n the first chapter, we looked at creating a veriety of shapes
in different sizes and colours. Now we’re going to be looking
at different ways of moving and manipulating those shapes

over time. Once we’ve covered the fundamentals of moving shapes
with code, we can then jump into using keyboard and mouse events
to control how and when things move in the next chapter. In this
tutorial, we wont’t be using one single Pygame program. Instead, we
have a couple of different code chunks, each demonstrating a different
concept. Each complete program will consist of the top code, followed
by one of the code chunks, and then finished with the bottom code.
You can use the same file to test the code, or you can create a different
file for each chunk; the result will be the same.

Things to notice
Before we jump into the animation, take a quick look at the import
statements on lines 2 and 3 of the top code on the page 22. In the last
tutorial, we imported all of Pygame and used some of its methods for
drawing shapes. That was fine, because we were only drawing static
things that didn’t take user inputs; from now on, though, we’re going to
include Pygame’s locals and events constants. These are special variables
that Pygame includes to help us write more readable code, as well as
take away some of the complexity of interacting with the system that
we’re running our code on. The pygame.locals variable mostly contains
properties that describe system and game state, so we’ve called it GAME_
GLOBALS to reflect this. pygame.events includes a list of events, like

keyboard events or system events
that have happened since Pygame
last updated its view; that’s why
we’ve imported it as GAME_EVENTS.
We’ll go over exactly what this
means exactly in a later chapter;
for now, all we’re going to use it
for in the bottom code is to check
whether or not our player tried to
quit the game as it was running
(in this case, by trying to close
the window), and then close our
program properly.

I

Below A
simulated

screenshot
showing

the random
placement of

red squares
in our

window

20

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

Moving shapes in time
and space
When we think of animation,
our minds might turn cartoons
and animated films: here, subtle
changes in shape and colour
trick our brains into seeing
movement where there is none.
It’s no different with computers:
whenever you move a mouse or
minimise a window, nothing has
actually been moved; instead,
pixels have been drawn, updated,
refreshed, and then drawn again,
with everything in its new place.

If you run chunk 01 (put the
top code, chunk 01 code and the
bottom code together in one file)
without uncommenting anything,
you’ll see a bunch of red squares appearing and disappearing all around
the screen. Don’t worry, nothing is broken! This is just to demonstrate
Pygame drawing, destroying and redrawing things in a window. Add a
to the start of the line that starts surface.fill(). We use this code
to clear the pixel data from the previous frame. Without it, what we
see is all of the different frames built up one on top of the other as
time passes. surface.fill() is like the paint that we use to cover old
wallpaper before we add the new one: it creates a blank slate for us to
work with.

But that’s not very useful, is it? Let’s replace chunk 01 code with
chunk 02 and you’ll see a green square moving slowly to the right of
the screen.

So, what’s making our square move? When we were following the
first tutorial, we were drawing shapes like this using numbers that we
would pass through to Pygame, like pygame.draw.rect(surface,
(255,0,0), (20, 50, 40, 30)), and that’s all well and good,
providing you never want to change anything about that shape. What
if we wanted to change the height, width, or colour of this shape?
How could we tell Pygame to change the numbers that we’ve already

Above This table
demonstrates how
different motions
affect the position
of a shape over time

When we run
our games, our
window is given
the title ‘Pygame
window’. We can
set that to any
string (series of
characters) we
like with pygame.
display.set_
caption(‘Pygame
Shapes!’)

[QUICK TIP]

21

ESSENTIALS

[Chapter One]21 [Chapter Two]

entered? This is where variables come in. Rather than passing through
numbers to pygame.draw.rect(), we pass in variables instead. After
we’ve drawn the shapes, we can change the variable so that when it’s
next drawn, it will look slightly different. With chunk 02, every time
we draw our green square, we add 1 to the variable we use to define its
X coordinate (how far it is from the left of the screen), greenSquareX.
We do this with +=, which basically says ‘take the current value of the
variable and then add whatever number comes after it’.

If we change that line to read greenSquareX += 5, every time we
draw our square, it will be 5 pixels to the right of where it was the last
time it was drawn. This gives the illusion of the shape moving faster
than before. If we changed the number we add to greenSquareX to
0, our shape would never move; and if we changed it to -5, it would
move backwards.

Moving in all directions
So that’s how we move left and right; if we can do that much, surely
we can go up and down too? Comment out the greenSquareX line
from chunk 02 and uncomment the line below by removing the #. Our
square will start to travel towards the bottom of the screen. Just like
before, we’re changing the variable that tells our shape where to go,
greenSquareY (note that we are now changing Y, not X), just a little
bit each time to make it move. And, just as we saw by changing the X

variable, we can make the green
square go up by adding a negative
number.

So now we can animate things
moving in four directions; that’s
enough freedom to make so many
classic games: Pokémon, Legend Of
Zelda, Space Invaders, and more.
These games would only move
things horizontally and vertically,
but never at the same time. The
next challenge would be how to
make things move diagonally.
Fortunately, this is a pretty
simple process too.

Below This diagram
shows the eight

directions a shape
can move in when

using integers

vx -= 1
vy += 1

vx += 1
vy += 1

vx += 3
vy += 1

-y

+x -y

+x

+x +y

+y

-x +y

-x

-x -y

rectWidth

re
ct

He
ig

ht

(rectX - rectWidth / 2,
rectY - rectHeight / 2)

(rectX, rectY)

window

Visible in window
Not visible in window,

but not deleted.

[QUICK TIP]
If we want to
subtract values
from a variable,
we don’t always
have to use -= for
subtraction and
+= for addition.
We can use += for
both; simply add a
negative number
to take away
numbers…
e.g. 4 + -3 = 1.

22

 [MAKE GAMES WITH PYTHON]

import pygame, sys, random
import pygame.locals as GAME_GLOBALS
import pygame.event as GAME_EVENTS

pygame.init()
windowWidth = 640
windowHeight = 480
surface = pygame.display.set_mode((windowWidth, windowHeight))
pygame.display.set_caption('Pygame Shapes!')TO

P
 [MAKE GAMES WITH PYTHON]

while True:
 surface.fill((0,0,0))
 pygame.draw.rect(surface, (255,0,0), (random.randint(
0, windowWidth), random.randint(0, windowHeight), 10, 10))CH

UN
K

01

greenSquareX = windowWidth / 2
greenSquareY = windowHeight / 2

while True:
 surface.fill((0,0,0))
 pygame.draw.rect(surface, (0, 255, 0),
 (greenSquareX, greenSquareY, 10, 10))
 greenSquareX += 1
 #greenSquareY += 1
 pygame.draw.rect(surface, (0, 0, 255),
 (blueSquareX, blueSquareY, 10, 10))CH

UN
K

02

blueSquareX = 0.0
blueSquareY = 0.0
blueSquareVX = 1
blueSquareVY = 1

while True:
 surface.fill((0,0,0))
 pygame.draw.rect(surface, (0, 0, 255),
 (blueSquareX, blueSquareY, 10, 10))
 blueSquareX += blueSquareVX
 blueSquareY += blueSquareVY
 blueSquareVX += 0.1
 blueSquareVY += 0.1CH

UN
K

03

 for event in GAME_EVENTS.get():
 if event.type == GAME_GLOBALS.QUIT:
 pygame.quit()
 sys.exit()
 pygame.display.update()BO

TT
OM

Download
magpi.cc/
1jQielj

http://magpi.cc/1jQielj

23

ESSENTIALS

[Chapter One]23 [Chapter Two]

If we uncomment
both greenSquareX and
greenSquareY in our code, then
our shape will move to the right
and down every time Pygame
updates the screen. If we add to
our X and Y values, our shapes
will move to the right and down.
If we add to our X value and
subtract from our Y value, then
our shapes will move to the

right and up. If we subtract from our X value and add to our Y value,
our shapes will move to the left and down. Finally, if we subtract
from both our X and Y values, our shape will move to the left and
upwards. That means we have eight directions that our objects can
move in – assuming, that is, that we use numbers that are whole and
equal to one another. If we used values that were different for our X
and Y values, and we used floats (which are numbers with a decimal
place, like 2.3 or 3.141) instead of integers (whole numbers), we could
achieve a full 360 degrees of motion.

Let’s play with numbers and decimals a little more. So far, the
values we’ve used to animate our shapes around the screen have been
integers that remain constant. With each frame, we would always
add 1 (or some other arbitrary value) to move our object. But what
happens if we change the values that we use to animate things? What
if, instead of adding 1 to X/Y coordinates, we add 1, then 1.1, then 1.2,
and so on?

Replace the code from chunk 02 with the code from chunk 03 (or
create a new file with the top + chunk 03 + bottom code). Now if we
run that, what do we see? We’re adding to both our X and Y values,

vx -= 1
vy += 1

vx += 1
vy += 1

vx += 3
vy += 1

-y

+x -y

+x

+x +y

+y

-x +y

-x

-x -y

rectWidth

re
ct

He
ig

ht

(rectX - rectWidth / 2,
rectY - rectHeight / 2)

(rectX, rectY)

window

Visible in window
Not visible in window,

but not deleted.

Above The blue box
is the viewport of a

Pygame window

If we subtract from our X value and
add to our Y value, our shapes will
move to the left and down...

24

 [MAKE GAMES WITH PYTHON]

rectX = windowWidth / 2
rectY = windowHeight / 2
rectWidth = 50
rectHeight = 50

while True:
 surface.fill((0,0,0))
 pygame.draw.rect(surface, (255,255,0), (
rectX-rectWidth /2, rectY-rectHeight /2, rectWidth,rectHeight))
 rectWidth += 1
 rectHeight += 1CH

UN
K

04
 [MAKE GAMES WITH PYTHON]

so our square is moving down and to the right, but something is
different from our previous bits of code: as our program continues
to run, our square moves to the right a little more than it did in
the previous frames. It’s accelerating. This is because we’re using
variables that store a basic measure of speed. By using a variable to
add a value to our X and Y coordinates, we can increase the amount
of distance that is added in each frame, which gives the illusion
of acceleration. If we were to change our code so that it increased
our speed variables (blueSquareVX / blueSquareVY in this case)
through multiplication instead of addition or subtraction, our shapes
would accelerate exponentially; we’d have hardly any time to see
them before they ran off the screen.

squaresRed = random.randint(0, 255)
squaresBlue = random.randint(0, 255)
squaresGreen = random.randint(0, 255)

while True:
 surface.fill((0,0,0))
 pygame.draw.rect(surface, (squaresRed, squaresGreen,
squaresBlue), (50, 50, windowWidth / 2, windowHeight / 2))
 if squaresRed >= 255:
 squaresRed = random.randint(0, 255)
 else:
 squaresRed += 1
 if squaresGreen >= 255:
 squaresGreen = random.randint(0, 255)
 else:
 squaresGreen += 1
 if squaresBlue >= 255:
 squaresBlue = random.randint(0, 255)
 else:
 squaresBlue += 1CH

UN
K

05

25

ESSENTIALS

[Chapter One]

Speaking of which, what
happens to our shapes when
they run off an edge and are
no longer on our screen? Have
they disappeared forever? The
answer is no. You can think of
our window like an actual window
in your house. If you look out of
the window to see a pedestrian
who then moves further down
the street so you can no longer

see them, they haven’t ceased to exist. They’re just beyond your line
of sight. If our shapes move further across our screen so that we can
no longer see them, they don’t stop moving or disappear, they keep on
going for ever, or until you tell them to stop and come back.

Change the third line in chunk 03 to read blueSquareVX = 8,
change the penultimate line in chunk 03 to blueSquareVX -= 0.2,
and comment out the last line. Now when we run chunk 03 for the last
time, we see that our square moves to the right across our screen, before
slowing to a stop and then coming back on itself, forming an arcing
animation. This is because the blueSquareVX variable has entered
minus numbers, but the blueSquareVY variable continues to increase.
If we had subtracted the VX and VY variables in equal values, with equal
starting speeds (both VX and VY being 8, for example), our shapes would
have continued along their path, stopped, and then reversed along the
exact same path, with the same rate of acceleration as it slowed. Play
with theses values to see what effect they have on how our shape moves.
If you like, you can comment out the surface.fill line and you’ll see
the path our shape takes trailing behind it.

Animating other properties
Animation isn’t just about making things move: it’s about making
things change, too. Until now, we’ve been animating shapes by moving
them, but we can use the same approach of changing variables over
time to affect other properties, like the dimensions of our shapes. For
this, switch out the chunk 03 code for chunk 04. Here, pygame.draw.
rect draws a rectangle just the same as we’ve done before, but, as in
other examples, we’ve replaced the parameters that determine the

Above This is the
path travelled by

a shape moving
across the window
while accelerating

25 [Chapter Two]

26

 [MAKE GAMES WITH PYTHON]

width and height of our rectangle
with variables that we change.

We also do a little bit of maths
in our code. As the square gets
larger, the point from which it
is drawn won’t change, so the
shape will get bigger, but it will
do so off-centre from the rest
of the window. By subtracting
half of the width and half of the
height from the coordinates that
we draw our shape at, our square
will remain in the centre of the
window as it gets larger. The nice
thing about using variables in our
maths is that no matter how we
change our variables, the shape created will always be in the centre of
the window. Change the number on the rectWidth line to any other
number between 2 and 10. Now, when our square enlarges, it becomes
a rectangle, because its width increases faster than its height does, but
it still remains in the centre.

The same effect works in the opposite direction. If we start off with a
square that has a width and a height of 50, which we can do by setting
the variables rectWidth and rectHeight to 50 and change the +=
on those lines to -=, our square will decrease in size while remaining
central to our window.

Something curious happens when our shape reaches a width and
height of 0: it starts to grow again. Why? When we hit 0, we start to
draw our rectangle with negative numbers, which we are offsetting
against with our maths. So, when we draw a shape with a negative
width and then offset it against a negative number, our starting points
become positive numbers again, albeit mirrored. We can’t see the
effect because we’re using solid colours, but if we were to use the same
expanding/shrinking code with an image, it would be flipped upside-
down and back-to-front. That’s just one of many little quirks that
we’ll explore in detail later, but for now, we’re going to finish up by
changing the colours of our shapes over time, by moving onto our last
code section, chunk 05.

Above This is
demonstrating
the varying
effects of
different
acceleration
values on shapes

 [MAKE GAMES WITH PYTHON]

vx -= 1
vy += 1

vx += 1
vy += 1

vx += 3
vy += 1

-y

+x -y

+x

+x +y

+y

-x +y

-x

-x -y

rectWidth

re
ct

He
ig

ht

(rectX - rectWidth / 2,
rectY - rectHeight / 2)

(rectX, rectY)

window

Visible in window
Not visible in window,

but not deleted.

27

ESSENTIALS

[Chapter One]

Changing colour over time
Just like our previous pieces of code, we’re using variables in place of
values to define what our shapes will look like with pygame.draw.rect.
This code, however, has something a little different from the previous
examples. Here, we’re not just adding and subtracting values each and
every time we draw our shapes; instead, we’re checking the values that we
have before we change them, using an if, else statement.

This is a key concept of game development: how a game responds to
a player’s actions is a result of hundreds and thousands of these little
checks going on every few milliseconds. Without them, there would be
no kind of order to any game: it would be like our first bit of code, with
the square simply appearing and disappearing at random positions,
and there’s not much fun in that! With these if, else checks, we’re
making sure that the red, green and blue values never go over 255 (the
maximum value that these colours can display at, otherwise Pygame will
return an error).

If our values are about to go over 255, we assign them a random value
between 0 and 255. The colour of our square will change and will then

continue to slowly work its way
through the RGB colour palette by
adding 1 to our R, G, and B variables
(squaresRed, squaresGreen and
squaresBlue) as our Pygame
program runs. Just as before, if
we added a larger number to each
of our variables, we would cycle
through the available colours more
quickly. Similarly, if we added less to
each RGB value every time Pygame
updates, we would cycle through all
of the available colours more slowly.
As well as a great learning device, it
looks pretty impressive, too.

vx -= 1
vy += 1

vx += 1
vy += 1

vx += 3
vy += 1

-y

+x -y

+x

+x +y

+y

-x +y

-x

-x -y

rectWidth

re
ct

He
ig

ht

(rectX - rectWidth / 2,
rectY - rectHeight / 2)

(rectX, rectY)

window

Visible in window
Not visible in window,

but not deleted.

Below Here are
the different

properties
that allow us

to centre a
square as it
enlarges or

shrinks

Games respond via thousands of
little checks every few milliseconds

27 [Chapter Two]

28

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

ESSENTIALS

In chapter three, we write some code to get to grips with
using our keyboard and mouse with Python and Pygame

 [MAKE GAMES WITH PYTHON]

28[Taking Control of the Keyboard & Mouse]

[CHAPTER THREE]
TAKING CONTROL OF

THE

KEYBOARD
& MOUSE

29

ESSENTIALS

[Chapter One]

n the first two chapters, we got to grips with the core concepts
of drawing and moving shapes of all types, sizes and colours
with Pygame. Now that we know our way around Pygame,

we’re going to start making things that we can play with that are a
more interactive. This time, we’re going to make two simple programs
to learn how to use our keyboard and mouse. For our first program,
we will use the keyboard; with it, we’ll draw a red square and give it
some code so it can move left and right and jump, which may conjure
memories of a certain heroic plumber. Our second program will use the
mouse. Again, we’ll create a square which we can pick up, drag around
and which, when we let go of our mouse button, will drop to the floor
with the help of a little Pygame-programmed gravity. We’re focusing
on game dynamics at this point, but don’t worry - later chapters will
explore the more aesthetic aspects of game design!

So, on to our first program - keyboard.py. In contrast to the previous
chapter, we’re not going to be chopping and changing bits of code to
affect the program. If you copy out keyboard.py and run it on your
Raspberry Pi, it’ll run just as we intend it to. This time, we’re going to
walk through the code line by line to understand exactly what each bit
does for the program. Like a lot of things in computing, we are going
to start at the top. The first 12 lines of code on page 32 should look
pretty familiar to you by now; these are the variables we’ve used in the
previous two parts to define how our window should look, and how
we want to interact with Pygame and its methods. The next dozen or
so lines are variables that we’ll use to determine how our keyboard-
controlled square should look and where it should be. Following that,
we have two functions, move() and quitGame(), which we’ll use
to move and quit the game. Finally, just as in the previous tutorial,
we have our main loop where we update our game and redraw all
of our pixels.

What keys have we pressed?
How do we know which keys are pressed and when? In the previous
chapter, we imported pygame.events as GAME_EVENTS; now we get to
use it. Every Pygame program we write is one big loop that keeps on
running forever or until we exit the program. Every time our loop runs,
Pygame creates a list of events that have occurred since the last time
the loop ran. This includes system events, like a QUIT signal; mouse

I
Pygame has a set
of handy built-in
variables for
checking which
keys are pressed.
We’ve only used
a couple, but
you can find the
complete list at
pygame.org:
bit.ly/1ycZt2i

[QUICK TIP]

29 [Chapter Three]

http://bit.ly/1ycZt2i

30

 [MAKE GAMES WITH PYTHON]

[Taking Control of the Keyboard & Mouse]

 [MAKE GAMES WITH PYTHON]

events, such as a left button click; and keyboard events, like when
a button is pressed or released. Once we have the list of events that
Pygame received, we can decide how our program should respond to
those events. If the user tried to quit, we could save the game progress
and close the window rather than just exiting the program, or we could
move a character every time a key has been pressed. And that’s exactly
what keyboard.py does.

On line 85, we create a for loop that will work through each event in
the list that Pygame created for us. The events are arranged in the list
in the order that Pygame received them. So, for example, if we wanted
to use the keyboard events to type in our player’s name, we could
trust that we would get all of the letters in the right order and not just
a random jumble of characters. Now that we have a list of events, we
can work through them and check if certain events that are relevant to
our game have happened. In keyboard.py, we’re primarily looking for
keyboard events; we can check whether or not an event is a keyboard
event by checking its ‘type’ property with event.type. If our event.
type is a pygame.KEYDOWN event, we know that a key has been pressed;
if our event.type is a pygame.KEYUP event, we know that a key has

been released. We look for KEYDOWN events on line 87 and KEYUP events
on line 93. We look for KEYDOWN events first because logic dictates it:
you’ve got to press a key down before it can pop back up again!

We know have a way of knowing if a key has been pressed, but how
do we know which key our player pressed? Every Pygame key event
has a ‘key’ property that describes which key it represents. If we were
to print out the event.key property, we would see a lot of numbers,
but these aren’t the keys that we pressed. The numbers we would see
are key codes; they’re numbers that are uniquely tied to each key on
your keyboard, and programmers can use them to check which keys
they represent. For example, the ESC key on your keyboard is 27, the

Once we have the list of events that
Pygame received, we can decide
how our program should respond...

31

ESSENTIALS

[Chapter One]

A key is 97, and the RETURN key
is 13. Does this mean that we
have to remember a seemingly
disconnected bunch of numbers
when we’re writing keyboard
code? Fortunately, the answer is
no. Pygame has a ton of values
for checking key codes, which are
easier to read and remember when
we’re writing code. On lines 89,
91, 93, and 97, we use pygame.K_
LEFT, pygame.K_RIGHT,
pygame.K_UP, and pygame.K_
ESCAPE to check whether or not
any of the key presses are keys
that we’re looking for.

Once we know that a key has
been pressed and which key it was, we can then write code to affect our
program in specific ways. For example, if the left arrow key has been
pressed, we can move our player to the left with playerX -= 5, but
we haven’t done that here. Why not? Pygame doesn’t emit duplicate
events for key presses, so if we hold down a key to keep our square
moving to the left, nothing would happen. Our square would move the
first time Pygame detected the key press, but then it would stop until
we pushed the button again. This is intended to help prevent situations
where multiple key presses could glitch our games or give a player
an unfair advantage, but it doesn’t help us very much when it comes
to creating games with smooth movement. So how do we get around
this? Every time we detect a key press, instead of taking an action,
such as moving our square, we set a variable instead. The variables
leftDown, rightDown, and haveJumped are the variables that we can
use to describe the key states (up or down) to the rest of our program.
Whenever we detect that the left arrow button has been pressed, we
set leftDown to True; if we detect that the left arrow button has been
released, we set leftDown to False. If our player holds down the key,
leftDown will always be True, so we can make our Pygame program
keep moving our square smoothly across the screen, even though it’s
not receiving a constant barrage of events telling it to do so.

31 [Chapter Three]

Above A basic
illustration of

code scope

32

 [MAKE GAMES WITH PYTHON]

[Taking Control of the Keyboard & Mouse]

 [MAKE GAMES WITH PYTHON]

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.
39.

Keyboard.py
import pygame, sys
import pygame.locals as GAME_GLOBALS
import pygame.event as GAME_EVENTS

Pygame Variables
pygame.init()

windowWidth = 800
windowHeight = 800

surface = pygame.display.set_mode((windowWidth, windowHeight))
pygame.display.set_caption('Pygame Keyboard!')

Square Variables
playerSize = 20
playerX = (windowWidth / 2) - (playerSize / 2)
playerY = windowHeight - playerSize
playerVX = 1.0
playerVY = 0.0
jumpHeight = 25.0
moveSpeed = 1.0
maxSpeed = 10.0
gravity = 1.0

Keyboard Variables
leftDown = False
rightDown = False
haveJumped = False

def move():
 global playerX, playerY, playerVX, playerVY, haveJumped, gravity

 # Move left
 if leftDown:
 #If we’re already moving to the right, reset the
 # moving speed and invert the direction
 if playerVX > 0.0:
 playerVX = moveSpeed
 playerVX = -playerVX
 # Make sure our square doesn’t leave our
 # window to the left

Download
magpi.cc/
1jQj5SS

http://magpi.cc/1jQj5SS

33

ESSENTIALS

[Chapter One]33 [Chapter Three]

40.
41.
42.
43.
44.
45.

46.
47.
48.

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

59.
60.
61.
62.
63.
64.
65.
66.
67.
68.

69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

 if playerX > 0:
 playerX += playerVX

 # Move right
 if rightDown:
 # If we’re already moving to the left, reset
 # the moving speed again
 if playerVX < 0.0:
 playerVX = moveSpeed
 # Make sure our square doesn’t leave our
 # window to the right
 if playerX + playerSize < windowWidth:
 playerX += playerVX

 if playerVY > 1.0:
 playerVY = playerVY * 0.9
 else:
 playerVY = 0.0
 haveJumped = False

 # Is our square in the air?
 # Better add some gravity to bring it back down!
 if playerY < windowHeight - playerSize:
 playerY += gravity
 gravity = gravity * 1.1
 else:
 playerY = windowHeight - playerSize
 gravity = 1.0

 playerY -= playerVY

 if (playerVX > 0.0 and playerVX < maxSpeed) or
 (playerVX < 0.0 and playerVX > -maxSpeed):
 if not haveJumped and (leftDown or rightDown)
 playerVX = playerVX * 1.1

How to quit our program
def quitGame():
 pygame.quit()
 sys.exit()

while True:

 surface.fill((0,0,0))

 pygame.draw.rect(surface, (255,0,0),

34

 [MAKE GAMES WITH PYTHON]

[Taking Control of the Keyboard & Mouse]

 [MAKE GAMES WITH PYTHON]

82.
83.
84.

85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
102.
103.

(playerX, playerY, playerSize, playerSize))

 # Get a list of all events that happened since
 # the last redraw
 for event in GAME_EVENTS.get():

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_LEFT:
 leftDown = True
 if event.key == pygame.K_RIGHT:
 rightDown = True
 if event.key == pygame.K_UP:
 if not haveJumped:
 haveJumped = True
 playerVY += jumpHeight
 if event.key == pygame.K_ESCAPE:
 quitGame()

 if event.type == pygame.KEYUP:
 if event.key == pygame.K_LEFT:
 leftDown = False
 playerVX = moveSpeed
 if event.key == pygame.K_RIGHT:
 rightDown = False
 playerVX = moveSpeed

 if event.type == GAME_GLOBALS.QUIT:
 quitGame()

 move()

 pygame.display.update()

Move()
Just after our key detection code we have line 111, which simply has
move() on it. This is a function call. Before now, almost all of the code
we’ve written has been inside our main loop. The problem is that after
a while, having every single line of code in one big loop can get a little
messy and hard to follow. So, to make our lives easier, we’ve put the
code that’s responsible for making our character move into its own
function, the move function. When we call move(), a lot of code then
runs. Let’s take a look at what’s going on.

35

ESSENTIALS

[Chapter One]

On line 31 we have a global
statement. Because our code is
inside the move() function, it
no longer has the same scope as
our for loop. Although we can
look at the values of variables
outside of our function, we can’t
set them, unless we include
them in the global statement.
This tells Python that when we
call playerX, for example, we
definitely mean the playerX
at the top of the file, not a new
playerX that we might create
within the function.

Lines 34 to 50 are where we make our square move left or right,
depending on the buttons that have been pressed. If the left arrow
button is down, we want to move the square/character/object to the
left. This is what we’re doing between lines 36 and 41. To do this
convincingly, we first need to check whether or not our square is
moving already and the direction in which it’s going. If our square is
already travelling to the right, we need to make it stop and then change
direction. Think about it: if you’re running in a straight line, you can’t
turn right around and keep running at the same speed. Rather, you
need to stop, turn, and then build the speed up again. Line 37 checks
whether our square’s X velocity is over 0.0 (going to the right). If it’s
not, then we either don’t need to move at all, or we’re already moving
to the left, so we can just keep on moving. But if we are moving to
the right, setting playerVX to moveSpeed and then inverting it will
stop our square and send it in the correct direction. We don’t want
our square to run off the screen either; lines 40 and 41 stop our square
moving if it’s at the left edge of our screen. Lines 44-50 do the exact
same thing but in reverse.

Lines 52-70 are a little different. It’s here that we add gravity to
our square’s movement. When we hit the up arrow on our keyboard,
our box jumps, but what goes up must come down. Just like when we
change direction when we run, we need to slow down after jumping
before we start to fall back down again. That’s what’s going on here.

35 [Chapter Three]

Within box
bounds

Not within
box bounds

Jump = (VY + 25)

Jump = Y + (1* 1, 1)

Above An example
of gravity working

against a Y velocity

The X and Y
coordinates of a
mouse are relative
to the left and top
of the window, not
the screen that
it’s in.

[QUICK TIP]

36

 [MAKE GAMES WITH PYTHON]

[Taking Control of the Keyboard & Mouse]

 [MAKE GAMES WITH PYTHON]

First, on line 52, we check to see whether our square is travelling
upwards at a speed greater than 1 pixel per frame. If it is, then we
multiply that value by 0.9 so it will eventually come to a point where it
is travelling less than 1 pixel per second; when that happens, we set the
value to 0 so that we can start falling back to the bottom of the screen.
Next, our code checks whether or not our square is in the air: if it is, it
will need to come back down. On lines 59-61, we check that the square
is in the air and then start adding the gravity value to the playerVY
value; this will make our square move back down to the bottom of the
screen. Each time we add the gravity value to the playerVY value, we
multiply the former by 1.1; this makes the square speed up as it falls
back to the bottom of the screen, just as it would if you threw a ball in
the air. Lines 63-64 reset the gravity and playerVY values when the
bottom of the square hits the bottom of the screen. Lines 68-70 are fun,
in that they stop the square from moving any faster left or right once our
square has jumped in the air. You can’t change direction after you jump;
you can only change direction when you hit the ground again, so that’s
what our square does too.

Pygame mouse events
That’s enough of the keyboard for now; it’s time for the mouse to
shine. The mouse is a simple bit of kit, so the code for it is far less
complicated than our keyboard code. If you copy out mouse.py and run
it, you’ll see a familiar red square sitting at the bottom of the screen.
Pressing your keyboard keys will do nothing this time, for this square is
different. If you want to move it, you’ve got to use the mouse to pick it
up. Drag your mouse over the square, hold down the left mouse button

Above A
demonstration
of the varying
effects of the
X velocity
when jumping

37

ESSENTIALS

[Chapter One]37 [Chapter Three]

and drag up. Our square moves
with our mouse. If you let go of
your mouse button, the square
will fall back to the bottom of the
window. Nice and simple, but
how does it work?

This time, we have hardly
any code at all in our main
for loop. Here we’re only
checking whether or not the
first mouse button has been
pressed and then we call three
functions: checkBounds(),
checkGravity(), and

drawSquare(). In our keyboard.py code, we put some of our code
into functions; this time we’re doing it to all of them, but we’ll get
to those in a bit.

The two important things we need to know when using a mouse
are where it is and which buttons, if any, have been pressed. Once we
know these two things, we can make begin to make things happen.
First of all, we’re going to find out where the mouse is, and we do that
on line 76 with pygame.mouse.get_pos(). Unlike our keyboard, we
don’t have to work through a list of events and check whether they
were mouse events. Instead, when we call pygame.mouse.get_pos()
we get a tuple back with two values: the current X and Y value of the
mouse inside the window. Now that we know where the mouse is, all
we need to do is determine whether or not any of the buttons have
been pressed; we do this on line 81. pygame.mouse.get_pressed()
returns a tuple of three values: the first is for the left mouse button,
the second for the middle mouse button, and the third for the right
mouse button. If the button is pressed down, then the value is True,
otherwise it’s False. We’re not doing anything with the middle or
right mouse button, so we can simply check the first value (the left
mouse button) with pygame.mouse.get_pressed()[0]. If pygame.
mouse.get_pressed()[0] is True, then our player has clicked a
button and we can proceed. In this case we set mousePressed to True,
just as we did with leftDown and rightDown in keyboard.py, so we can
use it throughout our program.

Above An illustration
of checking the box
bounds against the
cursor coordinates

Within box
bounds

Not within
box bounds

Jump = (VY + 25)

Jump = Y + (1* 1, 1)

38

 [MAKE GAMES WITH PYTHON]

[Taking Control of the Keyboard & Mouse]

 [MAKE GAMES WITH PYTHON]

Checking the square
Now that we know where our mouse is and which buttons are
pressed, we can do something with that information. Straight after
our code that checks our mouse buttons, we call checkBounds() on
line 86. checkBounds() has one job: to check whether or not our
mouse position is within the bounds (edges) of our square. If we were
making a fully fledged game, this function would probably check the
position of every game object against the mouse coordinates, but in
this example we’re only interested in our red square. Line 31 checks
whether or not our mouse button has been pressed – after all, there’s
no point in checking where our mouse is if it’s not doing anything.
If our mouse button has been pressed, on line 33 we look at where
the X coordinate of the mouse is and compare it to the X coordinate
of our square. If our mouse X is greater than the left of our square
and is smaller than the X value of the right of our square (squareX +
squareSize), we know that our mouse is within the X bounds of our
square, but that doesn’t mean that it’s inside our shape. Before we do
anything with our mouse, we need to check that the Y coordinate of our
mouse is within our square too, which we do on line 35. If the Y value of

our mouse is greater than the top of our shape and less than the bottom
of it, then we can be certain that our mouse is somewhere inside of our
shape. In mouse.py, we’ve checked the X coordinates and Y coordinates
on separate lines – we could have done this in a single line, but it would
be quite intimidating line to read, let alone write. Now that we know our
mouse is positioned within our square and that we’ve pressed our mouse
button, we can set our draggingSquare variable to True.

Once checkBounds() has done its job, checkGravity() gets to
work. Just as in keyboard.py, checkGravity() looks at where our
square is in the window: if it’s not on the bottom of our window, it will
accelerate our square to there. However, it will only do this if we’ve let
go of our mouse button, because we don’t want our shape to fall to the
ground when we’re holding onto it.

there’s no point in checking where our
mouse is if it’s not doing anything...

39

ESSENTIALS

[Chapter One]39 [Chapter Three]

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.
35.

36.
37.
38.
39.
40.
41.

import pygame, sys
import pygame.locals as GAME_GLOBALS
import pygame.event as GAME_EVENTS

Pygame Variables
pygame.init()

windowWidth = 800
windowHeight = 800

surface = pygame.display.set_mode((windowWidth, windowHeight))

pygame.display.set_caption('Pygame Mouse!')

Mouse Variables
mousePosition = None
mousePressed = False

Square Variables
squareSize = 40
squareColor = (255, 0, 0)
squareX = windowWidth / 2
squareY = windowHeight - squareSize
draggingSquare = False
gravity = 5.0

def checkBounds():

 global squareColor, squareX, squareY, draggingSquare

 if mousePressed == True:
 # Is our cursor over the square?
 if mousePosition[0] > squareX and
mousePosition[0] < squareX + squareSize:

 if mousePosition[1] > squareY and
mousePosition[1] < squareY + squareSize:

 draggingSquare = True
 pygame.mouse.set_visible(0)

 else:
 squareColor = (255,0,0)

Mouse.py Download
magpi.cc/
1jQj5SS

http://magpi.cc/1jQj5SS

40

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

42.
43.
44.
45.
46.
47.
48.
49.
50.

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.

 pygame.mouse.set_visible(1)
 draggingSquare = False

def checkGravity():

 global gravity, squareY, squareSize, windowHeight

 # Is our square in the air and have we let go of it?
 if squareY < windowHeight - squareSize and
mousePressed == False:
 squareY += gravity
 gravity = gravity * 1.1
 else:
 squareY = windowHeight - squareSize
 gravity = 5.0

def drawSquare():

 global squareColor, squareX, squareY, draggingSquare

 if draggingSquare == True:

 squareColor = (0, 255, 0)
 squareX = mousePosition[0] - squareSize / 2
 squareY = mousePosition[1] - squareSize / 2

 pygame.draw.rect(surface, squareColor, (
squareX, squareY, squareSize, squareSize))

How to quit our program
def quitGame():
 pygame.quit()
 sys.exit()

while True:

 mousePosition = pygame.mouse.get_pos()

 surface.fill((0,0,0))

 # Check whether mouse is pressed down
 if pygame.mouse.get_pressed()[0] == True:
 mousePressed = True
 else:
 mousePressed = False

41

ESSENTIALS

[Chapter One]

 checkBounds()
 checkGravity()
 drawSquare()

 pygame.display.update()

 for event in GAME_EVENTS.get():

 if event.type == pygame.KEYDOWN:
 if event.key == pygame.K_ESCAPE:
 quitGame()

 if event.type == GAME_GLOBALS.QUIT:
 quitGame()

86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

Our final function is drawSquare(): its purpose is easy enough
to guess. Based on the adjustments of checkBounds() and
checkGravity(), drawSquare() will draw the squarefor us. If our
square is being moved around by our mouse, it will draw the square at
the mouse coordinates. But if we aren’t dragging the square around,
it will draw a graceful gravity-driven descent back to the bottom of
our window. drawSquare() has one little trick up its sleeve: as well
as affecting the position of our square, it also changes its colour: red
when not being dragged and green when being dragged. This code could
be useful if, instead of a square, we had a character and we wanted to
change its graphic to make it look like it was holding onto our cursor.

What we’ve learned
We’ve learned that Pygame creates a list of events that occurred every
time the frame is updated, and that we can work through them to
check for events that we want to use. We learned that Pygame
receives key codes when buttons are pressed, but has a big list of key
code events that we can use so we don’t have to remember all of the
numbers. We learned that we can get mouse events whenever we
like, and that we can get coordinates of where the mouse is and which
buttons are pressed. We’ve also learned how to simulate gravity and
jumping, and we’ve made ourselves think about how things move
in the real world too. Congratulations! We now have the beginnings
of a real game.

41 [Chapter Three]

42

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

ESSENTIALS

 [MAKE GAMES WITH PYTHON]

42[Your First Game]

[CHAPTER FOUR]

YOUR FIRST
GAME

43

ESSENTIALS

[Chapter One]43 [Chapter Four]

ow that we’ve covered making shapes, animating them,
and setting up control mechanisms, we have everything we
need to make our first proper game. We’re going to make an

old-school drop-down game where platforms rise up from the floor
and try to crush our player against the roof; the only way to survive is
by dropping through the gaps in the platforms. Unlike our previous
examples, we’re not going to write a program that just runs: we will
also make a simple start screen and a game over screen. We still have
a couple of new things we’re going to learn about along the way, like
loading images and timing events. This is by far the largest piece of
code we will have written, but don’t worry: if you’ve followed along so
far, you’ll recognise much of it already!

How does our game work?
Before we write any code, though, it’s important to have a solid
understanding of how our game is going to work. When the game
starts, our avatar (a red rectangle) will drop down from the top of the
screen. Every two seconds, a white platform will start to rise from the
bottom of the screen; if our character lands on one of these platforms,
it will start to rise along with it. If we go off the top of the game
screen, it’s game over. Defeat is not assured, however: we can move
our character with the left and right arrow keys so it can drop down
through the randomly positioned gaps in the platforms. The aim of
the game is to stay alive as long as possible. It sounds easy, but things
get tougher as time goes on, because the platforms will start to appear
after a shorter delay.

Variables and prerequisites
Lines 1-39 of our code (see page 51) contain the import statements
and variables we’re going to need to get our game off the ground.
By now, much of this should look pretty familiar. At the top we
have our import statements, which let us include modules to help
with our game development. Take note of the GAME_TIME import,
as this will be used quite a bit later on. Lines 8 and 9 are loading
images that we’ll be using for our start and game over screens. We
could draw the graphical user interface (GUI) with code, but by using
images we’re saving ourselves time and effort at the cost of just a
few kilobytes.

N

44

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[Your First Game]

We’ve seen lines 11-15 before; these are the variables that we’ll use to
control how the game window looks. Lines 20-38 are the variables that
we’ll use to keep track of our game state, like where things are, how big
they are, and how they should move. Two of these might jump out as a
little bit different from variables we’ve used previously: gamePlatforms
and player. One of these looks empty and the other has multiple values.
gamePlatforms is a variable type known as a list, while player is a type
known as a dictionary, and they don’t work like other variables do. Let’s
take a little time to understand how they work.

Dictionaries and lists
In previous chapters, we’ve almost always used variables that have one
value, but there are other variables that can contain multiple values
- like tuples, for example – and these are very useful to us as we start
to make bigger and more powerful programs. When we write small
programs, having variables with a single value is great, because we can
see which variables are doing what. However, as programs grow, it can
get harder to name variables in a way that relates to what we’re trying
to do. Let’s imagine a game where there’s more than one player, like
an MMO; if we wrote code like we’ve done before, we’d need to create
multiple sets of variables for each player. It doesn’t take a genius to
realise the code is going to get unmanageably long, very quickly.

What if we wanted to handle four or 100 or 1,000 players at the same
time? Do we hand-write variables for every single one? No. We can use
dictionaries and lists instead.

The player variable on lines 32-38 is a dictionary. A dictionary is
a variable with multiple keys that have values. You can think of a
dictionary as you would its real-world counterpart: if you want to know
what something is, you search through until you find the definition.

Above
A handy
breakdown
of the various
components
of a dictionary

45

ESSENTIALS

[Chapter One]45 [Chapter Four]

So, let’s say we want to know what the value of x in the player
dictionary is; all we have to do is request player[“x”]. We can do the
same with any other value that is stored in it, and we can also save or
change values.

If the value player[“y”] is 20 and we wanted to change it to 25,
we’d enter player[“y”] = 25, just like setting any other variable.
Dictionaries are really useful, because they let us group values together
in a way that’s easy to read and easy to access with code. If we revisit
our MMO game thought exercise, we’d quickly realise that we’d still
need 100 variables to handle 100 players, even though we’ve made
things tidier and more usable. What’s the best way to keep track of
dictionaries? That’s where lists come in.

Lists are variables that can store groups of other variables. If we
wanted to keep track of the players in our game, we wouldn’t need to
make a variable for each player. We could just add a player dictionary to
a list and work through them whenever we need to. If, for example, we
wanted to get the information for the second player in our imaginary
MMO, we’d enter something like players[1] and that would return a
dictionary for our second player which we could then get values from,
like so: players[1][“x”]. The 1 in this example is called an index.
It’s important to notice that list indexes start counting from 0, so if

we want to access the first item
in a list, we use the index 0; if we
want to get the fourth item from a
list, we use the index 3.

In our game, we’re not
using lists and dictionaries to
track players, but to track the
platforms that we’ll be moving
along and dropping through.
We’ll have a look at that in a
little while, once we’ve examined
the game’s logic.

Below We could
code our title screen,

but using an image
is much simpler

Dictionaries are really useful, because
they let us group values together...

46

 [MAKE GAMES WITH PYTHON]

[Your First Game]

 [MAKE GAMES WITH PYTHON]

The ‘main’ game loop
Lines 40-146 are where the logic for our game lives, but the state
of our game is controlled in our main loop between lines 149 and
199. Just like our previous programs, on lines 153-176 we listen for
various in-game events in our main loop and effect changes based
on the events dispatched by our Raspberry Pi (keyboard, exit events,
etc). Lines 178-196 are where the state of our game is determined and
functions are called accordingly.

Each function between lines 40 and 146 is coded to handle a single
aspect of the gameplay independently of the other functions, but they
need to be called in a certain order to make sure that our game runs as
expected. In order to understand each function and aspect of our game,
we’re going to work through them in the order that our main loop
calls them. When our game first runs, we want to display our welcome
screen telling people to press space to start; when the user presses the
space bar, we want to start the game and when the user is pushed off
the screen, we want to show the game over screen and let them restart.
All of this is handled in the main loop. Let’s break it down.

The start game screen
When our game starts, we’re presented with the start game screen.
This screen is a simple image that we loaded on line 8 of our code
listing. At the other end of our listing, on line 189, we draw that
image onto our surface. It’s in the final if-elif statement of our
main loop. On line 178, our script checks whether or not a game is
already underway; if it is, it will check the game and render the screen
as required. If there isn’t a game underway, the loop then checks
whether or not a game has ended on line 187, in which case we want to
display the player’s score on the game over screen and offer them the
option to play again. If a game has neither been started nor finished,
we can infer that we’ve just started the game and so we can render
the start screen.

In order to start the game, we’re checking for a space bar keyboard
press on line 170. If a game hasn’t been started (or has just finished),
the restartGame function on lines 133-142 is called. All this function
does is reset all of the variables for a new game. On the next loop of
our main loop, the settings will be in place for a new game and one
will be started.

47

ESSENTIALS

[Chapter One]47 [Chapter Four]

The game platforms
Once the space bar has been pressed, a new game will begin. All of
the game logic is between lines 40 and 146, but we call the methods
to generate the game on lines 182-185 in a particular order. First, we
call movePlatforms(), which works through every platform in the
game and moves it up the screen at the speed set with the variable
platformSpeed. movePlatforms also checks whether or not the
platform has reached the top of our game window; if it has, it will
remove that platform from our gamePlatforms list. You may notice
that the for loop on line 110 is a little different from those we’ve used
in the past. Unlike most for loops in Python, this one passes the index

through to the loop with the idx
value. We need this index so we
can remove the right platform
from the gamePlatforms list,
otherwise we’d have to work
through the list and try to figure
out which one needs to go each
time, and that wouldn’t be good
for the frame rate. The function
pop removes an item from a list
at a given point; if we wanted
to remove the second platform
in the list, for example, we’d
pass gamePlatforms.pop(1) –
remember, lists begin at 0, so 1 is
the second item in our list.

Once we’ve worked out where
the platforms need to go and
which ones need to go away, we
can draw them. We do this with
drawPlatforms on lines 118-123.
Nothing fancy here; we’re just
drawing a white rectangle which
is the width of the screen, and
then a black rectangle for the
gap that the character can drop
through to the next platform.

Below Our ‘Drop’
game starts off easy,
but gets harder as it

progresses, creating
platforms more

quickly than at first

48

 [MAKE GAMES WITH PYTHON]

[Your First Game]

 [MAKE GAMES WITH PYTHON]

But where do these platforms come from? On line 196, we find the
answer. Pygame keeps track of how long the game has been running
for with its get_ticks function. We want to release a platform around
every 2 seconds; so, on each loop, we check to see how long it has been
since we created a new platform by subtracting the time that we last
created a platform from the current game time, which we access with
GAME_TIME.get_ticks(). The game time is recorded in milliseconds,
so if 2,000 milliseconds (1,000 milliseconds = 1 second) have passed
since we generated a platform, it’s time to create a new one; we do that
with createPlatform on line 94.

On line 96, we use global to tell our code that we want to use
variables that exist in the global scope, not create new ones with
the same name in the function scope. On lines 98-99 we’re creating
variables that will define the position of the platform (platformY)
and the location of the gap through which to drop along with it
(gapPosition). We want our platform to always rise from the bottom
of the window, but the gap can be at any point along the length
of the platform.

Just as tracking players becomes difficult when we have lots of them
to deal with, the same is true of our platforms here. We’re generating
a platform every 2 seconds, and that delay gets smaller each time. If
you’ve been playing for more than a minute, you’ll have jumped on
something like 100 platforms! We can’t pre-program all of those and
even if we could, our game would become very bland after a couple of
plays. Line 101 is where we create our new platforms. Like any list, we
can add new items to it; in Python, we can do this with .append(). In
this case, we’re creating a dictionary with everything we need to create
a platform, the position of the platform (stored with the pos key), and
the location of the gap (stored with the gap key).

Moving our avatar
Our avatar isn’t a complicated construct: at its simplest, it’s a red
rectangle. After our platforms are drawn, we want to work out where
our avatar can go. As you’ll see, the movePlayer() function on lines
44-92 is home to most of our game’s logic. Before we look at the code,
let’s talk about what’s happening: we want our player to fall when
there is either a gap in the platform or no platform at all. We also want
the avatar to travel up with the platform if there is no gap present. To code

49

ESSENTIALS

[Chapter One]49 [Chapter Four]

this logic, we could check the position of all of the platforms every frame
and write some code that would figure out whether or not our avatar is on
top of a platform or not, but that’s really going to make our Pi work hard
and wouldn’t be efficient. Instead, we’re doing something simpler: our
platforms are always white and our background is always black, so if we
can know the colour of the pixel just beneath our avatar, we can work out
whether or not we need to drop or not.

We also need to check that our avatar is completely off the edge
of our platform before we drop. To do this, we check the values just
beneath our avatar, to both the left and the right. We can get the colour
of a pixel at a certain point with surface.get_at((X, Y)); this will
return a tuple with four values (RED, GREEN, BLUE, OPACITY), each
between 0 and 255, just as if we had set the colours ourselves. On lines
51-52 we check the colour beneath the bottom left of our avatar, and
on lines 54-55 we do the same for the bottom right. If the colour values
we find at either the bottom left or the bottom right of the avatar are
(255,255,255,255) (white), then we know at least one edge of our
avatar is still on a platform. If both are anything but white, then there’s
a gap in the platform or we’re in blank space, so we can let our avatar
drop. This all happens on lines 57-68. We also check that we don’t let
our avatar run off the bottom of our window.

So, that’s the code that handles what to do if we aren’t on top of a
platform, but what about when we want our avatar to travel with the
platform? If our avatar finds itself unable to go down, we need to work
out where the platform stops and the blank space starts. We do this on
lines 64-80. On lines 66 and 67 we set two variables, foundPlatformTop
and yOffset; we use these values to help our while loop on lines 70-80.
When we find a white pixel beneath either the bottom left or right of
our avatar, we need to work backwards to move our avatar up with the
platform. Our while loop subtracts 1 from our player[“y”] value and
checks the colour that it finds there. Remember, we haven’t drawn our
avatar yet, so the only colours on our surface are black (background) or
white (platforms). If the coordinates checked are white, 1 is added to the

Above Here’s a
handy reference to

help with appending
a dictionary item

to a list

50

 [MAKE GAMES WITH PYTHON]

[Your First Game]

 [MAKE GAMES WITH PYTHON]

yOffset and the while loop continues to search for a black pixel.
It will do this until it finds a black pixel above the x coordinate of our
avatar, adding 1 to the yOffset variable each time. Once a black pixel
is found, we’ve discovered where our platform ends and can subtract
the yOffset from player[“y”] to put our avatar just on top of the
platform; this is done on line 73. If we don’t find a black pixel before
we reach the top of the surface, it’s game over: our avatar is trapped
off screen.

Moving our character left and right is done on lines 82-92. If the
code looks familiar, it’s because we used it in our last tutorial to move
our squares around. Now that we’ve worked out where our avatar can
go, we can draw it by calling drawPlayer() on line 203.

Game over
We’re almost done; the last thing we want to handle is what happens
when our player loses the game. The game is over once our avatar
disappears off the top of our screen, and we want to tell the user that.
When our avatar disappears, we call the gameOver function on line 79.
All the gameOver function does is set some variables that our main
loop will check to see if the game is underway. Once gameEnded is True
and gameStarted is False, our main loop will draw our game over
screen. Just like our welcome screen, we draw our game over image
onto the surface on line 193 and give the player the option to restart
the game with another space bar press.

And that’s it! Using all the skills we’ve already acquired (and a few
new ones), we’ve built our first fully fledged game. Like all good games,
we’ve got a start, a middle, and an end.

Left Just like our
start screen, our
game over screen
is simply an image
drawn straight onto
our surface when
we need it

51

ESSENTIALS

[Chapter One]51 [Chapter Four]

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

import pygame, sys, random
import pygame.locals as GAME_GLOBALS
import pygame.event as GAME_EVENTS
import pygame.time as GAME_TIME

pygame.init()

title_image = pygame.image.load(“assets/title.jpg”)
game_over_image = pygame.image.load(“assets/game_over.jpg”)

windowWidth = 400
windowHeight = 600

surface = pygame.display.set_mode((windowWidth,
windowHeight))
pygame.display.set_caption(“Drop!”)

leftDown = False
rightDown = False

gameStarted = False
gameEnded = False
gamePlatforms = []
platformSpeed = 3
platformDelay = 2000
lastPlatform = 0
platformsDroppedThrough = -1
dropping = False

gameBeganAt = 0
timer = 0

player = {
 “x” : windowWidth / 2,
 “y” : 0,
 “height” : 25,
 “width” : 10,
 “vy” : 5
}

Just_drop.py Download
magpi.cc/
1jQj9Cb

http://magpi.cc/1jQj9Cb

52

 [MAKE GAMES WITH PYTHON]

40.
41.
42.

43.
44.
45.
46.
47.
48.
49.
50.
51.

52.
53.
54.

55.
56.
57.

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

73.
74.
75.
76.

[Your First Game]

 [MAKE GAMES WITH PYTHON]

def drawPlayer():

 pygame.draw.rect(surface, (255,0,0), (player[“x”],
player[“y”], player[“width”], player[“height”]))

def movePlayer():

 global platformsDroppedThrough, dropping

 leftOfPlayerOnPlatform = True
 rightOfPlayerOnPlatform = True

 if surface.get_at((player[“x”], player[“y”] +
player[“height”])) == (0,0,0,255):
 leftOfPlayerOnPlatform = False

 if surface.get_at((player[“x”] + player[“width”], player[
“y”] + player[“height”])) == (0,0,0,255):
 rightOfPlayerOnPlatform = False

 if leftOfPlayerOnPlatform is False and
rightOfPlayerOnPlatform is False and (
player[“y”] + player[“height”]) + player[“vy”] < windowHeight:
 player[“y”] += player[“vy”]

 if dropping is False:
 dropping = True
 platformsDroppedThrough += 1

 else :

 foundPlatformTop = False
 yOffset = 0
 dropping = False

 while foundPlatformTop is False:

 if surface.get_at((player[“x”], (
player[“y”] + player[“height”]) - yOffset)) == (0,0,0,255):
 player[“y”] -= yOffset
 foundPlatformTop = True
 elif (player[“y”] + player[“height”]) - yOffset > 0:
 yOffset += 1

53

ESSENTIALS

[Chapter One]53 [Chapter Four]

77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.

90.
91.

92.
93.
94.
95.
96.
97.
98.
99.
100.
101.

102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.

 else :

 gameOver()
 break

 if leftDown is True:
 if player[“x”] > 0 and player[“x”] - 5 > 0:
 player[“x”] -= 5
 elif player[“x”] > 0 and player[“x”] - 5 < 0:
 player[“x”] = 0

 if rightDown is True:
 if player[“x”] + player[“width”] < windowWidth and (
player[“x”] + player[“width”]) + 5 < windowWidth:
 player[“x”] += 5
 elif player[“x”] + player[“width”] < windowWidth and (
player[“x”] + player[“width”]) + 5 > windowWidth:
 player[“x”] = windowWidth - player[“width”]

def createPlatform():

 global lastPlatform, platformDelay

 platformY = windowHeight
 gapPosition = random.randint(0, windowWidth - 40)

 gamePlatforms.append({“pos” : [0, platformY],
“gap” : gapPosition})
 lastPlatform = GAME_TIME.get_ticks()

 if platformDelay > 800:
 platformDelay -= 50

def movePlatforms():
 # print(“Platforms”)

 for idx, platform in enumerate(gamePlatforms):

 platform[“pos”][1] -= platformSpeed

 if platform[“pos”][1] < -10:
 gamePlatforms.pop(idx)

54

 [MAKE GAMES WITH PYTHON]

117.
118.
119.
120.
121.
122.

123.

124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.

136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.

[Your First Game]

 [MAKE GAMES WITH PYTHON]

def drawPlatforms():

 for platform in gamePlatforms:

 pygame.draw.rect(surface, (255,255,255), (platform[“pos”]
[0], platform[“pos”][1], windowWidth, 10))
 pygame.draw.rect(surface, (0,0,0), (platform[“gap”],
platform[“pos”][1], 40, 10))

def gameOver():
 global gameStarted, gameEnded

 platformSpeed = 0
 gameStarted = False
 gameEnded = True

def restartGame():

 global gamePlatforms, player, gameBeganAt,
platformsDroppedThrough, platformDelay

 gamePlatforms = []
 player[“x”] = windowWidth / 2
 player[“y”] = 0
 gameBeganAt = GAME_TIME.get_ticks()
 platformsDroppedThrough = -1
 platformDelay = 2000

def quitGame():
 pygame.quit()
 sys.exit()

‘main’ loop
while True:

 surface.fill((0,0,0))

 for event in GAME_EVENTS.get():

 if event.type == pygame.KEYDOWN:

55

ESSENTIALS

[Chapter One]55 [Chapter Four]

157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.

 if event.key == pygame.K_LEFT:
 leftDown = True
 if event.key == pygame.K_RIGHT:
 rightDown = True
 if event.key == pygame.K_ESCAPE:
 quitGame()

 if event.type == pygame.KEYUP:
 if event.key == pygame.K_LEFT:
 leftDown = False
 if event.key == pygame.K_RIGHT:
 rightDown = False

 if event.key == pygame.K_SPACE:
 if gameStarted == False:
 restartGame()
 gameStarted = True

 if event.type == GAME_GLOBALS.QUIT:
 quitGame()

 if gameStarted is True: # Play game

 timer = GAME_TIME.get_ticks() - gameBeganAt

 movePlatforms()
 drawPlatforms()
 movePlayer()
 drawPlayer()

 elif gameEnded is True:
 # Draw game over screen
 surface.blit(game_over_image, (0, 150))

 else :
 # Welcome Screen
 surface.blit(title_image, (0, 150))

 if GAME_TIME.get_ticks() - lastPlatform > platformDelay:
 createPlatform()

 pygame.display.update()

56

 [MAKE GAMES WITH PYTHON]

[Your First Game]

 [MAKE GAMES WITH PYTHON]

ESSENTIALS

In chapter five, we learn about loading and
playing sounds in your Pygame projects
by making a fun farmyard soundboard.

 [MAKE GAMES WITH PYTHON]

56[Pygame Soundboard]

[CHAPTER FIVE]

PYGAME
SOUNDBOARD

57

ESSENTIALS

[Chapter One]

n the previous chapter, we put together a simple video
game in which we tried to avoid the dreadful fate of being
crushed by a ceiling by dropping through platforms into the

space below. It didn’t have the fanciest graphics, but, then again,
fancy graphics aren’t everything. One simple thing that we can do
to enhance our players’ experience is to add sounds, and that’s what
we’re going to be doing here. We’re going to learn how sounds work
with Pygame by putting together a soundboard with some simple
controls. We’ll learn about loading sounds, playing them, adjusting the
sound controls, and using the mixer to stop everything. We’ll also put
together some code to create the soundboard buttons; this will draw
from our knowledge of lists, dictionaries, and mouse events which we
have gained in previous chapters.

While MP3 is a really popular format for playing music and
sounds (no doubt you have thousands of files sitting on a hard drive
somewhere), the downside is that it’s a proprietary technology.
As such, Pygame and other popular libraries don’t support MP3 out
of the box, perhaps because they can’t afford to pay for a licence. We,
therefore, are going to use OGG, an open sound format that your Pi and
Pygame will play without any problems at all. All of the sounds for this
project are available on GitHub, in OGG and MP3 format, for you to play
with. You can download the code and sounds here: bit.ly/1J7Ds6m.

I

Right Audio

Left Audio

SOUND 2

SOUND 1

MIXER

Left Speaker

Right Speaker

Right Audio

Left Audio

Above A basic
diagram of how

the Pygame
audio mixer

works

57 [Chapter Five]

http://bit.ly/1J7Ds6m

58

 [MAKE GAMES WITH PYTHON]

[Pygame Soundboard]

First things first
Just like any Pygame project, there are a couple of things we need to
sort out before we can get our hands dirty writing some real code. Lines
1-14 should look really familiar to you by now: first we have our import
statements on lines 1-5 , then we set the properties of our windows on
lines 6-11, and finally we create a couple of variables for use in our Pygame
program a little later on lines 13-17. If you look at line 13, you’ll see the
buttons variable; when we’re ready to start creating our buttons, we’ll
append some dictionaries to this list so we can easily keep track of all of the
soundboard buttons we create. On the next line, we have our stopButton
dictionary; when we create our stop button, it’ll behave much like the rest
of the buttons on our soundboard except that it will stop all current sounds
playing. Since it’s unique, our stop button gets its own variable.

On lines 83-106 we have our familiar old ‘main’ loop. It’s looking a lot
smaller than last time: that’s because we’ve broken out all of the code
that we could put in main into separate functions. If we didn’t, things
would start to get quite messy and hard to follow. By having functions
that handle one thing very well, we can write a program that runs well
and looks great, too. Just as before, our main loop is responsible for
wiping the screen (line 84); handling mouse, keyboard, and system
events (lines 88-100); and calling functions to draw in our window.

Let’s mix it up with Pygame mixer
If you’re going to use sounds in Pygame, you’re more than likely going to
be using Pygame’s built-in mixer. You can think of the mixer like its real-
world equivalent: all sounds across the system (or in our case, across hte
game) pass through it. When a sound is in the mixer, it can be adjusted in
a variety of ways, volume being one. When our mixer is finished, it passes
the sound through to an output, which, in this case, is our speakers. So,
before we start loading or playing any sounds, we need to initialise the
mixer, just as we need to initialise Pygame before we draw things; we do
that on line 19.

The sound object fits the bill
for our soundboard better...

 [MAKE GAMES WITH PYTHON]

59

ESSENTIALS

[Chapter One]

Our first sound
You can play sounds a couple
of different ways in Pygame:
you can either play a stream of
sound, which you can think of as
sound being played as it’s being
loaded, or you can create and play
a sound object, which loads the
sound, stores it in our Raspberry
Pi’s memory, and then plays
it. Each way of playing sound is
good for different instances. The
streaming of sound is better, for
example, when we want to create
background music that plays while
we are doing other things, whereas
the sound object is a better choice

for when we want to play short sounds quickly and often.
The sound object fits the bill for our soundboard better than the sound

stream, so we’ll use those for our buttons a little later on. First we’re
going to add some ambience to our soundboard with a little background
audio from a farm. Background audio usually loops without any sort
of user interaction, and streaming audio can be set to loop without too
much trouble, so that’s what we’re going to do. Before we can play any
music, we need to load it: on line 20 of our program we point Pygame to
our background audio farm.ogg. This loads the audio into our mixer, but
it won’t play straight away. On line 21 we call pygame.mixer.music.
play(-1), which starts playing our sound file. The number we pass
is the number of times we want to our sound to repeat before it stops
playing. We’ve passed -1, which means that it will loop forever, or until
we stop it. If we ran our soundboard at this point, we’d have a lovely big
blank window with some calming farm sounds playing, but that’s a bit
bare. It’s time to make some buttons!

A button here, a button there, buttons EVERYWHERE!
So, how are we going to make these buttons? We could do what we’ve
done in previous chapters and draw some shapes and add text to them;
that would certainly do the job, but it won’t look great. Instead, we’re

59 [Chapter Five]

Not clickable Clickable

Above A diagram
visualising the

imaginary bounding
box that surrounds

the buttons in our
Pygame program

60

 [MAKE GAMES WITH PYTHON]

[Pygame Soundboard]

going to make our buttons out of some images your expert has put
together for each different animal sound. If you want to take a peek at
the buttons before loading them, they’re included in the folder code/
assets/images, which you can grab from the GitHub repo. Each button
has a silhouette of an animal. It will make the sound this animal makes
when we click it, but how do we make an image make a sound? We are
going to be using lists and dictionaries again: remember the buttons
variable we looked at right at the start of this chapter? You can see that
it’s currently empty, but now it’s time to add some dictionaries describing
our buttons to it.If you look at lines 71-80, you’ll see that each line
creates a new dictionary for each animal. Each dictionary has three keys
(or properties: the terms are interchangeable). The first one is image,
which will load the image for that button for us. In previous dictionaries,
we’ve stored strings in dictionaries and then used those strings to load
images when we’ve needed them; this time, however, we’ve actually
loaded each image into our dictionary with pygame.image.load(). This
saves time when we have to draw something many times, and seeing as

the image never changes, it makes sense to have it there. Our next key
is position; this is a simple tuple that contains the x and y coordinates
for where our buttons will be drawn. The last property, sound, is just like
our image property, except that, as you might expect, it loads a sound
instead of an image. Here we’re loading the sounds as objects, which
means that they’re essentially self-contained in terms of how they
work. With the background audio we loaded earlier, we passed the data
straight through into the mixer and played it through the latter. A sound
object, however, has functions that let us control the audio by itself. For
example, we could call sound.play() and the sound would play, or we
could call sound.stop(), but it would only apply to the sound we were
calling those functions on: if we had two sounds playing at the same time
and we stopped only one, the other would keep playing.

 [MAKE GAMES WITH PYTHON]

The last property, sound, is
just like our image property,
except that it loads a sound

61

ESSENTIALS

[Chapter One]

Drawing our buttons
On lines 71-80, we’ve added nine different buttons, but if we were to run
our program without finishing it, we would still only see a blank white
window. This is because we haven’t drawn the buttons yet. We’ve only
loaded the necessary code to make them work. In our main loop on line
101, we call the function drawButtons(), which can be found on lines
23-28; this will draw the buttons to our surface. You may be surprised that
we can use such a small amount of code to draw nine buttons. This is due
to the fact that we’ve done all of the hard work of finding and loading our
images and sounds before our main loop could even run: we have very
little to do when we actually draw the buttons to our surface. On line 25
we have a for loop which works through the buttons list we looked right
at the start on line 13; for every dictionary it finds in the list, it will draw a
button onto our surface, using the properties it finds and a process called
blitting. This happens on line 26. Blitting is something you might have
come across in the past, but don’t worry if you haven’t: it’s essentially
a fancy way of saying ‘paste’, and we used it in our last tutorial to draw
the start and finish screens for our drop game. When we blit something,
we take the pixels of our surface and then we change the pixels so that
they’re the same as the image we’re adding. This means that anything
that was beneath the area being blitted is lost. It’s a lot like cutting letters
out of a newspaper and supergluing them onto a piece of paper: whatever
was beneath the newspaper clipping is gone forever, but we can see what
we cut out of the newspaper just fine.

61 [Chapter Five]

450, 600

530, 575

(530 - 450)) / 100 = 0.8
0.8

0.0 1.0

Right An illustration
of the equation
used to control

the volume

62

 [MAKE GAMES WITH PYTHON]

[Pygame Soundboard]

Clicking our buttons
Now that we have a soundboard with buttons, we need to make those
buttons do something. Buttons are one of those things that can be
really simple or really tricky: some systems do a lot of the work for
you, whereas others don’t do so much. Unfortunately, Pygame is one
of the latter systems, but that doesn’t matter: we can write the code
for our buttons ourselves. On lines 89-100 we have code which handles
some of the events that happen in Pygame. You’ll recognise the code
on lines 89-97: it’s the same code that we’ve used to quit Pygame for
the last four tutorials, but on lines 99-101 you’ll notice we are looking
for a MOUSEBUTTONUP event. If you are wondering why we look for
MOUSEBUTTONUP and not something like MOUSECLICK, remember that

for a mouse button to go up, it has to have gone down first, meaning
that the mouse must have been clicked. If the mouse has been clicked,
we call the handleClick() function, which is on lines 38-55. Just like
when we drew our buttons, we’re going to work through the buttons list
to find out where they are on our surface. If our mouse clicked where a
button is, we’ll play that sound, otherwise we’ll do nothing.

In order to check whether or not a button was clicked, we need to
know three things: 1) the position of each button, 2) the size of that
button, and 3) where the mouse was when it was clicked. If our mouse
coordinates are greater than the x and y coordinates
of the button image, but less than the x and y coordinates plus the width
and height of the image, then we can be sure that the button we’re
checking against was clicked and we can therefore play the sound for
that button; otherwise, the mouse was outside the button. Checking
this way is a little bit of a cheat: our buttons are circles, but we check
whether or not a click has happened within a square that surrounds

 [MAKE GAMES WITH PYTHON]

Buttons are one of those
things that can be really
simple or really tricky...

63

ESSENTIALS

[Chapter One]

the button. We do this because
the result is almost exactly the
same and the code to check for a
click in a square is much quicker
than that for checking a circle or
irregular shape. This square is
often referred to as a bounding
box, and it’s often used to check
for clicks.

The checks happen on lines
47 and 49. If either statement is
found to be False, then nothing
will happen, but if both are
correct, then we play the sound
with line 50. Remember, this is a
sound object, not a sound stream,
so when we play this sound, it
gets played through the mixer, as
all sounds pass through in order
to play. Note that the mixer has

no control over that specific sound, however, because it plays in its
own separate channel.

Having said that, we can control certain aspects of the sounds with
our mixer. For example, we can pause the playback of all sound, or stop
it altogether, which leads us nicely onto our next section.

Stopping all of our sounds
We have done a great job of getting our code to produce a range
of farmyard noises, but what can we do if we want to make these
noises stop? Fortunately, we have a button to take care of this for
us. On line 14 we have a dictionary called stopButton; unlike our
soundboard buttons, it doesn’t have a sound, just an image and a
position element. That makes it special. Beneath all of the code used
to handle our sound buttons, we have some code that only deals with
the stop button: on line 28 we draw the stop button, just after we’ve
drawn all of the sound ones, and on lines 53-55 we specifically check
whether or not it is the stop button that has been clicked. Why do
we give the stop button special treatment? The answer is that it is

63 [Chapter Five]

Above A screenshot
of our finished

soundboard

64

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[Pygame Soundboard]

unique, and for every button that doesn’t do the same thing as all
of the other buttons, we need to write custom code. Of course, we
could use dictionaries and lists as we’ve done for our sound
buttons, but that’s far more complicated than is required for our
purposes right now.

IT’S LOUD! Oh… it’s quiet now…
So, we’ve loaded sounds, played them, and stopped them dead, but
what if we just wanted to make the sounds a little quieter? This is
simple enough to achieve. Each of our sound objects has a set_
volume() function which can be passed a value between 0.0 and 1.0.
0.0 is mute, while 1.0 is full volume. If you pass a value larger than
1.0, it will become 1.0, and if you pass a value less than 0.0, it will
become 0.0. To begin, we need to make a volume slider. On lines 30-
36 we draw two rectangles. The first rectangle represents the range
of 0.0 to 1.0, and the second rectangle is an indicator of the current
volume. When we first start our soundboard, the volume (which is set
on line 17 of our code) is set at 1.0, so our indicator should be all the
way over on the right, but that doesn’t do us much good if we want to
turn things down. Just before we call drawVolume() on line 104, we
call checkVolume() on line 103. Here we look at the current position
of the mouse and whether or not the left mouse button is held down.
If it is, our user is likely trying to drag our indicator to the level
they want the sound to be at. So we work out where the mouse is on
between 0.0 and 1.0 on our indicator and set the volume to the new
level. Then, when our drawVolume function is called, the indicator
will be drawn at the correct position. Now, when we next click a
sound, it will be set to the level we’ve chosen with the set_volume()
function on our sound object, which you can see on line 50.

And that’s it. We’ve learned everything we need to know about
making sounds play in our game. We’ve covered background audio,
the sound mixer, streaming sound, and sound objects. We’ve also
used lists and dictionaries to create and manipulate buttons, building
on what we learned in the previous chapter. Now, we have a fully
functioning soundboard which could form part of a game.

If you want a challenge, see if you can write code using what
you’ve learned in the book so far to trigger the animal sounds using
the keys 1-9 on your keyboard.

65

ESSENTIALS

[Chapter One]65 [Chapter Five]

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.
38.
39.
40.

import pygame, sys, random
import pygame.locals as GAME_GLOBALS
import pygame.event as GAME_EVENTS
import pygame.time as GAME_TIME

windowWidth = 600
windowHeight = 650

pygame.init()
surface = pygame.display.set_mode((windowWidth, windowHeight))
pygame.display.set_caption('Soundboard')

buttons = []
stopButton = { "image" : pygame.image.load(
"assets/images/stop.png"), "position" : (275, 585)}

mousePosition = None
volume = 1.0

pygame.mixer.init()
pygame.mixer.music.load('assets/sounds/OGG/farm.ogg')
pygame.mixer.music.play(-1)

def drawButtons():

 for button in buttons:
 surface.blit(button["image"], button["position"])

 surface.blit(stopButton["image"], stopButton['position'])

def drawVolume():

 pygame.draw.rect(surface, (229, 229, 229), (450, 610, 100, 5))

 volumePosition = (100 / 100) * (volume * 100)

 pygame.draw.rect(surface, (204, 204, 204), (
450 + volumePosition, 600, 10, 25))

def handleClick():

 global mousePosition, volume

Sounds.py Download
magpi.cc/
1sgf4Rf

http://magpi.cc/1sgf4Rf

66

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[Pygame Soundboard]

 for button in buttons:

 buttonSize = button['image'].get_rect().size
 buttonPosition = button['position']

 if mousePosition[0] > buttonPosition[0] and
mousePosition[0] < buttonPosition[0] + buttonSize[0]:

 if mousePosition[1] > buttonPosition[1] and
mousePosition[1] < buttonPosition[1] + buttonSize[1]:
 button['sound'].set_volume(volume)
 button['sound'].play()

 if mousePosition[0] > stopButton['position']
[0] and mousePosition[0] < stopButton['position'][0] +
stopButton['image'].get_rect().size[0]:
 if mousePosition[1] > stopButton['position']
[1] and mousePosition[1] < stopButton['position'][1] +
stopButton['image'].get_rect().size[1]:
 pygame.mixer.stop()

def checkVolume():

 global mousePosition, volume

 if pygame.mouse.get_pressed()[0] == True:

 if mousePosition[1] > 600 and mousePosition[1] < 625:
 if mousePosition[0] > 450 and mousePosition[0] < 550:
 volume = float((mousePosition[0] - 450)) / 100

def quitGame():
 pygame.quit()
 sys.exit()

Create Buttons
buttons.append({ "image" : pygame.image.load(
"assets/images/sheep.png"), "position" : (25, 25), "sound" :
pygame.mixer.Sound('assets/sounds/OGG/sheep.ogg')})
buttons.append({ "image" : pygame.image.load(
"assets/images/rooster.png"), "position" : (225, 25), "sound" :
pygame.mixer.Sound('assets/sounds/OGG/rooster.ogg')})
buttons.append({ "image" : pygame.image.load(
"assets/images/pig.png"), "position" : (425, 25), "sound" :

41.
42.
43.
44.
45.
46.
47.

48.
49.

50.
51.
52.
53.

54.

55.
56.
57.
58.
59.
60.
61.

62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

73.

74.

67

ESSENTIALS

[Chapter One]67 [Chapter Five]

pygame.mixer.Sound('assets/sounds/OGG/pig.ogg')})
buttons.append({ "image" : pygame.image.load(
"assets/images/mouse.png"), "position" : (25, 225), "sound"
: pygame.mixer.Sound('assets/sounds/OGG/mouse.ogg')})
buttons.append({ "image" : pygame.image.load(
"assets/images/horse.png"), "position" : (225, 225), "sound"
: pygame.mixer.Sound('assets/sounds/OGG/horse.ogg')})
buttons.append({ "image" : pygame.image.load(
"assets/images/dog.png"), "position" : (425, 225), "sound" :
pygame.mixer.Sound('assets/sounds/OGG/dog.ogg')})
buttons.append({ "image" : pygame.image.load(
"assets/images/cow.png"), "position" : (25, 425), "sound" :
pygame.mixer.Sound('assets/sounds/OGG/cow.ogg')})
buttons.append({ "image" : pygame.image.load("assets/images/
chicken.png"), "position" : (225, 425), "sound" : pygame.
mixer.Sound('assets/sounds/OGG/chicken.ogg')})
buttons.append({ "image" : pygame.image.load("assets/images/
cat.png"), "position" : (425, 425), "sound" : pygame.mixer.
Sound('assets/sounds/OGG/cat.ogg')})

‘main’ loop
while True:

 surface.fill((255,255,255))

 mousePosition = pygame.mouse.get_pos()

 for event in GAME_EVENTS.get():

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:
 quitGame()

 if event.type == GAME_GLOBALS.QUIT:
 quitGame()

 if event.type == pygame.MOUSEBUTTONUP:
 handleClick()

 drawButtons()
 checkVolume()
 drawVolume()

 pygame.display.update()

75.

76.

77.

78.

79.

80.

81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.

68

 [MAKE GAMES WITH PYTHON]

[Pygame Soundboard]

 [MAKE GAMES WITH PYTHON]

ESSENTIALS

In chapter six, we give our game objects
mass and let gravity come into play.

 [MAKE GAMES WITH PYTHON]

68[Physics & Forces]

[CHAPTER SIX]

PHYSICS
& FORCES

69

ESSENTIALS

[Chapter One]

n previous chapters, we’ve put together code that let us
take control of elements in our program whenever we
interact with them, be it by clicking, dragging or typing. The

difficulty is, there’s only so much we can do with these interactions;
no matter what, everything we do will be determined by ourselves in
some way, and that can get a little bit boring after a while. This being
the case, in this chapter we’re going to give certain elements of our
program the ability to interact with things around them without us
having to do anything: we’re going to add gravity (or rather, motion
that really closely resembles gravity) to some planets that we’re

going to make as part of a solar system simulator.
We must acknowledge a debt of gratitude to Daniel Shiffman

for the inspiration behind this chapter. His book The Nature of
Code explains the concepts found here and more in far greater
detail. All of his code is written in Java (Processing), but you
should be able to convert it to Python with a little bit of work.

Understanding gravity
You may be thinking that we have already covered the
subject of gravity in chapter three. This is only partly
the case. There, we added a force which we called gravity
to certain objects to make them fall to the bottom of the
window. However, that force was not particularly dynamic: no

matter the object’s size or velocity, it would simply add to the
Y value of an object until it reached the bottom of the screen,

which is not very interesting. For this new kind of gravity, we’re
going to be using something called vectors. A vector is a value

which describes two things: direction and magnitude. With these,
we can calculate the effect of one object with mass on the velocity
(the speed and direction) of another object with mass. This program
is bigger than anything we’ve made before, but we’re not going to
look at a great deal of it. Most of the things, such as drawing images
or handling key presses, we’ve done before, so we’re not going to
revisit them; instead, we’re going to focus on describing gravity and
implementing that in our code. This is going to take some serious
thinking, so if you don’t understand everything the very first time,
don’t worry: almost everyone else who reads this will probably feel
like they might need to go through it again.

I

69 [Chapter Six]

70

 [MAKE GAMES WITH PYTHON]

So, what is this ‘gravity’ business, anyway?
In the real world, gravity follows a rule called the inverse square law,
which is this:

“The gravitational attraction between two point masses is
directly proportional to the product of their masses and inversely
proportional to the square of the separation distance. The force is
always attractive and acts along the line joining them.”

This seems like a very complicated concept, but what does it mean?
It’s actually really simple: it means the force acting on something
reduces as the distance increases. Thus, however strong the pull of
gravity on something is – like, for example, the Earth pulling on a
football 1 foot in the air – if we were to move the same object so that
it was 3 feet away from the gravity source, the force will be 1/9th as
strong, that is 1/3 squared or 1 / distance2. The same law applies to
more than just gravity - it affects light and sound too - but that’s not
relevant here. What is important is you should now be begining to get
a feeling for how gravity should work: further away means less force,
closer means more force. Equally important is the final sentence of
that statement:
“The force is always attractive
and acts along the line
joining [the point masses].”

Gravity always pulls, and
never repels. It always pulls in
the direction of the objects it is
pulling. It is because of this truth
that we’re going to use vectors to
simulate gravity. Using vectors,
we can calculate the direction
of each object in relation to
another and adjust it to the
force of gravitational attraction
accordingly. The result is that
gravity happens.

CAUTION: MATHS AHEAD

[Physics & Forces]

 [MAKE GAMES WITH PYTHON]

Below An illustration
demonstrating
the gravitational
attraction of two
bodies, one orbiting
the other

71

ESSENTIALS

[Chapter One]

V is for vector
So now we’ve got an understanding
of how gravity works, it’s time to
take a look at what a vector is. You
can think of a vector like an arrow:
it has two values, an X and a Y, and
together these point in a direction.
For example, if we were to draw a
line from (0,0) along a vector of (8,
4) on a grid, it would point down
and to the right; for every unit
travelled along the X axis (pixels,
centimetres, inches, fathoms, the

unit type doesn’t matter), 0.5 units would be travelled along the Y axis. If
we were to draw another line from (0,0) along a vector of (-1, -2), the line
would travel to the left and up; for each unit travelled along the X axis, two
would be traversed along the Y axis.

So with vectors we can describe direction, but we can also express
something called magnitude. The magnitude of the vector is the length
of the line drawn between (0,0) and the vector on a grid, but we can also
think of the magnitude as an amount or size of something; for example,
we could use it as speed.

When we use vectors to describe direction, it often helps to normalise
them. This means we take a vector, such as (1, 3), and turn each
value into a value somewhere between -1 and 1 by dividing it by the
magnitude. For instance, the vector (1, 3) would be normalised to (0.316,
0.948), while (-8, 2.4) would normalise to (-0.957, 0.287). Normalising
our values in this way makes it much easier to affect things with force
and direction. By having a value between -1 and 1, we have only an
indication of direction. When we have that, we’re free to adjust it by any
value to suit our needs; for instance, we could multiply the values by a
speed value to give something motion.

71 [Chapter Six]

(-7, -6)
(6, 3)
(2, 9)
(-2, 2)

10, 0

0, -10

0, 10

-10, 0

Above A diagram
showing vectors

on a grid

The magnitude of the vector
is the length of the line drawn

72

 [MAKE GAMES WITH PYTHON]

[Physics & Forces]

A speedy overview
To review the material we have just covered: gravity always attracts in
the direction of something with a mass; vectors describe a direction
and a magnitude which is an amount of something, such as speed; and
vectors can be shrunk down to a value between -1 and 1 to describe only
a direction, through a process called normalisation. Now that we have
revised and understood these key concepts, it is time to start looking
at some code with Pygame.

As we said earlier, we’re going to skip over explaining a lot of the code
for this tutorial – it is all material we have looked at before – but for the
sake of clarity we’ll do a quick pass over the functions, what they do,
and the order they’re called in. With the knowledge we’ve gained above,
we’re going to construct a solar system simulator that moves planets
around with gravity, based on their mass and velocity.

On lines 1-30 of simulator.py we have all of the variables we need
to run our program. The import statements at the top of our script are
almost identical to our previous programs, with one exception: import
solarsystem on line 5. This is not a module like the other import
statements, but rather a custom script written for this tutorial, and you
can grab it from GitHub. Just drop it in the same folder as simulator.
py; it simply creates new planets for our simulator and doesn’t need to
be in the main simulator.py code, as our games are going to start to get
messy if everything is in one script!

 [MAKE GAMES WITH PYTHON]

V
(3, 2)

(-8, 5)

(15, 0.6)

3 +22 2

-8 +52 2-8 +5

2 215 +0.6

= 3.60

= 9.43

= 15.01

M
X=3 / 3.60
Y=2 / 3.60

= 0.83
= 0.55

X=-8 / 9.43
Y=5 / 9.43

= -0.84
= 0.53

X=-15/ 15.01
Y=0.6/ 15.01

= 0.99
= 0.03

= (0.83, 0.55)

= (-0.84, 0.53)

= (0.99, 0.03)

NVector Magnitude Normalised

Normalising Vectors

Below The maths
of calculating
the magnitude
of a vector and
normalising it

73

ESSENTIALS

[Chapter One]73 [Chapter Six]

Lines 31-54 contain
the functions drawUI(),
drawPlanets() and
drawCurrentBody(). These
are responsible for drawing
the elements of our program
to our window. All of these
are called once every time the
main loop runs, in the order
drawUI(), drawPlanets(),
and then drawCurrentBody().
The currentBody function is
responsible for drawing the
planet that the user is currently

dragging around the window, before letting it go to affect other planets
with its gravity.

Lines 56-82 involve the calculateMovement() function. It is here
that we make all of the gravity magic happen. It gets called in the main
loop, just before drawPlanets(). This is the clever bit of our program
and we’ll work through every single line in a moment.

Lines 84-106 handle the mouse and system events. When our
player clicks somewhere in our window, handleMouseDown() is run
and checks whether or not our user clicked in one of the planet tabs
at the bottom of our window with checkUIForClick(). If they have,
checkUIForClick() will return the name of that planet and it will be
created with solarsystem.makeNewPlanet(), the only function that
we imported with import solarsystem at the start of our script.

Finally we have lines 109-165, our familiar ‘main’ loop. Just like in
our previous programs, it is from here that we call functions to handle
user interactions and update our surface. The function calls on lines
146-157 are where we update and draw our planets.

The movement of the Spheres
So, let’s get to work. If you fire up the simulator.py script, you’ll see
our Solar System Simulator. After four seconds, the logo will disappear
and you’ll then be able to drag one of the eight planets at the bottom
to somewhere on the screen. Each planet has characteristics which
loosely reflect those of its real-world counterpart. Jupiter has the

Above Our Solar
System Simulator on

its first run

74

 [MAKE GAMES WITH PYTHON]

[Physics & Forces]

 [MAKE GAMES WITH PYTHON]

greatest mass, Mercury has the least, Venus is only slightly smaller
than Earth, Mars is a third of Earth’s size and so on. By clicking on a
planet, we create a new planet which is stored in the currentBody
variable. The latter lets us create and place a planet without affecting
any other planets on the screen. It’s only when we let go of the planet
that gravity is allowed to take effect on the new body in the solar
system. All of this neat gravitational magic happens on lines 56-82.

No matter how far apart two objects are in the universe, they still
have a gravitational pull on one another, even if it is infinitesimally
small. If you were to place two dice a metre apart in space and leave
them to their own devices, eventually the pull of the dice on one
another would bring them both together without any help from
another force. This effect is replicated in our simulator. Each planet
in our solar system has a gravitational effect on every other body in
our system. To do this, we create a for loop that works through every
planet in our celestialBodies list on line 58.

For each planet we have, we want to calculate its effect on every other
planet in our system, so the first thing our for loop on line 58 does is
create another loop to work through the rest of the planets. We don’t
want to calculate the effect of a planet on itself, so before we start our
calculations we need to check that otherPlanet is not the same as the
planet we’re using for the gravitational pull calculations. Once we have a
valid planet to affect (we will refer to it here as otherPlanet), we can start
working with numbers and figuring out some vectors.

The first thing we need to find is the vector between the planet and
otherPlanet. We do this on line 64 with the variable direction. The
variable is named ‘direction’ because it points from the coordinates of
our planet to the coordinates of the otherPlanet that we’re trying to
affect. Once we have the direction, we can work out the magnitude (in
this case, the distance) between the two planets.

To help us work out the magnitude of our direction vector, we can
use Python’s built-in maths library, specifically the hypot method
which we use on line 65. If you’re curious about the actual formula for
figuring out the magnitude, it’s the square root of the X squared and Y
squared coordinates added to each other. Once we have our magnitude,
we can use it to normalise our direction vector. Normalising our vector
means we’ll have vector X and Y values that are proportional to one
another but fall between -1 and 1. This is useful for us, because that

75

ESSENTIALS

[Chapter One]75 [Chapter Six]

lets us multiply our vector by any
value we wish to affect our force.
To normalise our vector, all we
have to do is divide our direction
vector by the magnitude, and
we do that on line 66 with
the variable nDirection.

We have almost everything we
need to start applying gravity,
but before we do, we should
limit magnitude. Strange things
happen when forces are very big
or very small, even in simulators,
so we set a maximum for the

number that magnitude can be on lines 68-72.
We now have all we need to apply gravity to our planet. However,

at this point, we’d be applying an arbitrary value that had nothing to
do with the properties of our planets. What we want to do now is take
into consideration the mass of our objects, because gravity only affects
things with mass.

On line 74 we have the strength variable. Here, we calculate how
much force we need to apply to each planet to generate gravity.
First, we multiply the planet’s mass by the otherPlanet’s mass and
multiply that by our gravity variable on line 29. The gravity value
is arbitrary and we can tweak it to generate stronger or weaker
gravitational effects: remember, we’re creating the illusion of
gravity, not actually modelling the universe. Next, we divide that
value by magnitude squared: this enables our objects to accelerate as
they approach one another. Finally, we divide all of that by the mass
of the planet we’re affecting, otherPlanet. This lets our objects move
slower if they are dense, and faster if they are less dense. By making
it harder to move the big planets, we avoid small planets towing
much larger ones around.

We now have the values we need to apply gravity to our planets.
On line 75, we create a new vector. By multiplying our normalised
direction vector (nDirection) by the strength value, we now have
a vector with both direction and magnitude determined by the
gravitational attraction of our objects. On lines 77 and 78 we apply this

Above The lines of
attraction drawn
between planets

76

 [MAKE GAMES WITH PYTHON]

[Physics & Forces]

 [MAKE GAMES WITH PYTHON]

new vector to the velocities of our otherPlanet; the next time
our planet is drawn, its position will have been adjusted by gravity.

The last section of calculateMovement() on lines 80 to 82 doesn’t
have anything to do with moving the planets: it simply draws a line
between our planet and every otherPlanet that it’s having an effect
on. It’s the line of attraction we looked at earlier, and it illustrates the
directions that gravity is pulling our planets in. You can toggle this on
and off with the ‘A’ key.

Rounding up
We have covered rather a lot of material in this chapter. We have
learned all about vectors and how we can use them to determine both
speed and direction, rather like velocity. We have also learned how
to normalise values so they can be made to do our bidding through
multiplication. We have learned about how gravity works in the real
world, and how we can emulate that in our simulated world. We also
have some pretty neat code for handling our mouse and keyboard
events. It may have been complicated, but hopefully you are getting a
sense of what you can do with Pygame.

Simulator.py
01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.

12.
13.
14.
15.
16.
17.

import pygame, sys, random, math
import pygame.locals as GAME_GLOBALS
import pygame.event as GAME_EVENTS
import pygame.time as GAME_TIME
import solarsystem

windowWidth = 1024
windowHeight = 768

pygame.init()
surface = pygame.display.set_mode((
windowWidth, windowHeight), pygame.FULLSCREEN)

pygame.display.set_caption(‘Solar System Simulator’)

previousMousePosition = [0,0]
mousePosition = None
mouseDown = False

Download
magpi.cc/
1jQkp8m

http://magpi.cc/1jQkp8m

77

ESSENTIALS

[Chapter One]77 [Chapter Six]

18.
19.
20.
21.
22.

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

48.
49.
50.
51.
52.
53.
54.

background = pygame.image.load(“assets/background.jpg”)
logo = pygame.image.load(“assets/logo.png”)
UITab = pygame.image.load(“assets/tabs.png”)
UICoordinates = [{“name” : “mercury”, “coordinates” :
(132,687)}, {“name” : “venus”, “coordinates” : (229,687)},
{“name” : “earth”, “coordinates” : (326,687)},
{“name” : “mars”, “coordinates” : (423,687)},
{“name” : “jupiter”, “coordinates” : (520,687)},
{“name” : “saturn”, “coordinates” : (617,687)},
{“name” : “neptune”, “coordinates” : (713,687)},
{“name” : “uranus”, “coordinates” : (810,687)}]

celestialBodies = []
currentBody = None

drawAttractions = True

gravity = 10.0

def drawUI():
 surface.blit(UITab, (131,687))
 surface.blit(solarsystem.images[“mercury”], (158,714))
 surface.blit(solarsystem.images[“venus”], (247,706))
 surface.blit(solarsystem.images[“earth”], (344,704))
 surface.blit(solarsystem.images[“mars”], (451,714))
 surface.blit(solarsystem.images[“jupiter”], (524,692))
 surface.blit(solarsystem.images[“saturn”], (620,695))
 surface.blit(solarsystem.images[“neptune”], (724,697))
 surface.blit(solarsystem.images[“uranus”], (822,697))

def drawPlanets():

 for planet in celestialBodies:
 planet[“position”][0] += planet[“velocity”][0]
 planet[“position”][1] += planet[“velocity”][1]
 surface.blit(solarsystem.images[planet[“name”]],
(planet[“position”][0] - planet[“radius”],
planet[“position”][1] - planet[“radius”]))

def drawCurrentBody():

 currentBody[“position”][0] = mousePosition[0]
 currentBody[“position”][1] = mousePosition[1]

 surface.blit(solarsystem.images[currentBody[“name”]],

78

 [MAKE GAMES WITH PYTHON]

[Physics & Forces]

 [MAKE GAMES WITH PYTHON]

(currentBody[“position”][0] - currentBody[“radius”],
currentBody[“position”][1] - currentBody[“radius”]))

def calculateMovement():

 for planet in celestialBodies:

 for otherPlanet in celestialBodies:

 if otherPlanet is not planet:

 direction = (
otherPlanet[“position”][0] - planet[“position”][0],
otherPlanet[“position”][1] - planet[“position”][1])
The difference in the X, Y coordinates of the objects
 magnitude = math.hypot(
otherPlanet[“position”][0] - planet[“position”][0],
otherPlanet[“position”][1] - planet[“position”][1])
The distance between the two objects
 nDirection = (
direction[0] / magnitude, direction[1] / magnitude)
Normalised vector pointing in the direction of force

 # We need to limit the gravity
 if magnitude < 5:
 magnitude = 5
 elif magnitude > 30:
 magnitude = 30

 strength = ((
gravity * planet[“mass”] * otherPlanet[“mass”]) / (
magnitude * magnitude)) / otherPlanet[“mass”]
How strong should the attraction be?

 appliedForce = (
nDirection[0] * strength, nDirection[1] * strength)

 otherPlanet[“velocity”][0] -=
appliedForce[0]
 otherPlanet[“velocity”][1] -=
appliedForce[1]

 if drawAttractions is True:
 pygame.draw.line(
surface, (255,255,255),
(planet[“position”][0],planet[“position”][1]),(

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

65.

66.

67.
68.

69.
70.
71.
72.
73.
74.

75.
76.

77.

79.

80.
81.
82.

79

ESSENTIALS

[Chapter One]79 [Chapter Six]

83.
84.
85.
86.
87.
88.
89.

90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.

102.
103.
104.
105.
106.
107.
108.
109.
110.
111.

112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.

otherPlanet[“position”][0],otherPlanet[“position”][1]), 1)

def checkUIForClick(coordinates):

 for tab in UICoordinates:
 tabX = tab[“coordinates”][0]

 if coordinates[0] > tabX and coordinates[0] < tabX
+ 82:
 return tab[“name”]

 return False

def handleMouseDown():
 global mousePosition, currentBody

 if(mousePosition[1] >= 687):
 newPlanet = checkUIForClick(mousePosition)

 if newPlanet is not False:
 currentBody = solarsystemmakeNewPlanet(
newPlanet)

def quitGame():
 pygame.quit()
 sys.exit()

‘main’ loop
while True:

 mousePosition = pygame.mouse.get_pos()
 surface.blit(background, (0,0))

 # Handle user and system events
 for event in GAME_EVENTS.get():

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:
 quitGame()

 if event.type == pygame.KEYUP:

 if event.key == pygame.K_r:
 celestialBodies = []

80

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[Physics & Forces]

 if event.key == pygame.K_a:
 if drawAttractions is True:
 drawAttractions = False
 elif drawAttractions is False:
 drawAttractions = True

 if event.type == pygame.MOUSEBUTTONDOWN:
 mouseDown = True
 handleMouseDown()

 if event.type == pygame.MOUSEBUTTONUP:
 mouseDown = False

 if event.type == GAME_GLOBALS.QUIT:
 quitGame()

 # Draw the UI, update the movement of the planets,
 # draw the planets in their new positions.
 drawUI()
 calculateMovement()
 drawPlanets()

 # If our user has created a new planet,
 # draw it where the mouse is
 if currentBody is not None:
 drawCurrentBody()

 # If our user has released the mouse, add the new
 # planet to the celestialBodies list
 if mouseDown is False:
 currentBody[“velocity”][0] = (
mousePosition[0] - previousMousePosition[0]) / 4
 currentBody[“velocity”][1] = (
mousePosition[1] - previousMousePosition[1]) / 4
 celestialBodies.append(currentBody)
 currentBody = None

 # Draw the logo for the first four seconds
 if GAME_TIME.get_ticks() < 4000:
 surface.blit(logo, (108,77))

 # Store the previous mouse coordinates to create a
 # vector when we release a new planet
 previousMousePosition = mousePosition

 pygame.display.update()

125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.

143.
144.
145.
146.
147.

148.
149.
150.
151.

152.

153.
154.

155.
156.
157.
158.

159.
160.
161.
162.

163.

81

ESSENTIALS

[Chapter One]

 [MAKE GAMES WITH PYTHON]

ESSENTIALS

In chapter seven, we create circles which
can bounce off one another if they collide.

 [MAKE GAMES WITH PYTHON]

[CHAPTER SEVEN]

PHYSICS &
COLLISIONS

81 [Chapter Seven]

82

 [MAKE GAMES WITH PYTHON]

What happens when an unstoppable force
meets an immovable object?
In our last chapter, we simulated a sizeable amount of a solar
system. Using vectors and maths, we created a gravitational
attraction between objects with mass to simulate their movement
in space. Small objects would orbit larger ones, large objects would
move very little when attracted to smaller objects and vice versa,
and all was well in the simulated world. That said, one thing might
have seemed a little odd: when two objects collide in the real world,
they bounce off one another (or implode), but in our simulation
they just slipped by one another as if they were ghosts. This time,
howver, we’re going to write code that lets our objects collide and
bounce off each other.

So, what are we making?
Unlike last time, we aren’t going to be using planets and the solar
system to prettify the effect – we’re going to use basic circles for
our program. Using circles makes it easier for us to use maths to
calculate collisions, and we can change the properties of the circles
to reflect the qualities they represent: for example, more mass or
a bigger radius. That said, although we aren’t using images of the
solar system in this program, we can still think of the particles we’ll
be colliding in terms of a solar system.

The smallest of our collidable objects will be like meteors: they
move really fast, but require less energy to do so. A medium-size
object would behave much as
a planet might; they move at a
moderate speed and have more
kinetic energy behind them. If
they bump into a smaller object,
they will adjust course, but not by
much, whereas the smaller body
will fly off!

We’re going to use the code
from the last tutorial as a
springboard for this one. All of
our objects will have a mass and
will attract every other object

 [MAKE GAMES WITH PYTHON]

[Physics & Collisions]

Below Simulating
object collisions

83

ESSENTIALS

[Chapter One]

gravitationally using the same
calculateMovement() method
as before.

Let’s take a quick walk through
our code now. Just like our
previous bits of code, the top
of collisions.py (between lines
1-24) imports the modules we’ll
need for our code and declares
the variables that we’ll be
using throughout the tutorial.
Obviously, these variables are
very similar to the variables
we used for our solar system
simulator, but there’s one little
difference: instead of storing
all of our planets in a list called
celestialBodies, this time
we’re storing all of our objects in
the collidables list.

Lines 26-84 will also seem
familiar. drawCollidables
is the same function as our
drawPlanets() function, our
drawCurrentBody() hasn’t
changed at all, and the same can

be said for our calculateMovement() function which handles the
gravity of all of our objects.

The handleCollisions() function on lines 86-135 is where we’ll
spend our time this tutorial. Here, we check for colliding objects and
adjust their trajectories accordingly.

Lines 137-202 contain the logic for our keyboard and mouse
interactions, as well as our main loop. Just as before, clicking in our
window will create a new particle which will only affect the movement
of other particles once the mouse has been released. If the mouse was
moving when it was released, the particle will inherit the velocity of
the mouse pointer.

83 [Chapter Seven]

Above
A diagram of all

of the aspects
needed to

bounce
one circle

off another

84

 [MAKE GAMES WITH PYTHON]

What do we need to know to simulate a collision?
We need to know a couple of things before we can simulate a collision.
First, we need to know which two objects, if any, are colliding. Once
we know which two objects are colliding, we need to figure out how
fast they’re going, the angle of incidence (which we’ll look at in a little
while), and the mass of each of the objects.

So, how do we know which two objects are colliding? This pretty
straightforward when you use circles. Circles are regular shapes: each
point along the circumference is the same distance from the centre
as every other point; this measurement from the edge to the centre
is the radius. By measuring the distance between the centres of two
objects, we can check whether or not the outlines of the objects are
intersecting. If the distance between the centres of two circles is less
than the radius of each circle added to the other, we can conclude that
they must be colliding.

On lines 88-96, we create two for loops that let us work through
every possible collidable object in our simulation. Inside these loops,
we measure the distance between the centres of every object in our
collidables list. We do this on line 102 with our distance variable,
using Python’s maths module. If the distance between the two centres
of our objects is more than the combined length of the radius of each
circle, our objects are not colliding, and we then continue on measuring
the distance to other circles. However, if the distance is less than the
sum of the radii, then our objects are colliding and we can start figuring
out what to do with them.

The angle of incidence
How do we create a convincing bounce effect? In the past, whenever
we’ve wanted to restrict or adjust movement, we’ve been doing so with
squares or rectangles – shapes with flat sides. Going too much to the
right? Okay, we’ll send it back to the left. Going too far down? Okay,
we’ll send it back up. Now, we’re dealing with circles. Instead of having
eight directions to choose from, we now have 360. If our circles hit
each other square on, then all we have to do is send them back along

WARNING! PYTHAGORAS’
THEOREM AHEAD

 [MAKE GAMES WITH PYTHON]

[Physics & Collisions]

A hat tip for this
chapter goes
out to Steve
and Jeff Fulton.
They put a huge
amount of effort
into dissecting
old Flash-based
physics code
into its core parts
and putting it
back together
for their book
HTML5 Canvas,
which made this
chapter possible.

[THANKS]

85

ESSENTIALS

[Chapter One]85 [Chapter Seven]

the path they came, but these
are circles with gravity; hitting
another circle square on along
the X or Y axis is not going to
happen very often. If a collision
happens a little to the left or
right of the centre of the X or Y
axis, we need to send our objects
on two new paths, but how do
we know which direction to send
each object? For this, we need
to use the angle of incidence:
this is the angle at which an
object is travelling as it collides
with another object. If we know
the angle at which two things
collide, we can figure out along
which angle we can send them

on their way onward: this is the angle of reflection, which is the
reverse of the angle of incidence.

This is not as complicated as it sounds. Imagine a ball hitting a
vertical wall at an angle 45, so its vector is (1, 1), travelling to the
right and down in equal measure. After the ball hits the wall, the rate
at which the it falls to the ground is unchanged, but the direction it’s
travelling is reversed along its X axis; our ball is still travelling at 45
degrees, but now it’s travelling away from the wall, at -45 degrees
or with a vector of (-1, 1). We’ve coded this previously, when we first
started bouncing objects around a window, but we weren’t using the
same terms we are here. Now we know why we made objects move
the way we did.

On line 107, we calculate the angle of incidence between the
centre of the two circles colliding with math.atan2, which basically
works out the hypotenuse of an imaginary right-angled triangle
drawn using the two centre points of the circles. If you were to print
out the value of the direction variable, you might expect it to read
somewhere between 0 and 360 because an angle is measured in
degrees. In fact, you’ll get a value between 1 and 2π (pi * 2): our angle
has been measured in radians. This may seem counter-intuitive, but

Above A right-
angled triangle

is used to figure
out the angle
of incidence

86

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[Physics & Collisions]

to a computer (and mathematicians) it makes perfect sense. If you
want to see the degree value, you can simply do ‘radians * (180/pi)’,
but we are going to stick with radians because it keeps our code tidy.

Bounce!
Now we’ve got the angle of incidence, we can calculate which way
to send our colliding objects, but first we need to obtain a couple of
other values to make everything work. Next, we need to work out
the speed at which our circles are moving. You may wonder why, if
we have vectors, we need a separate speed value. It is indeed true
that we use vectors to affect the speed and direction of our objects,
but that’s part of the problem: our vector is a measure of both speed
and direction. As it is, we can’t use the vectors to find out how many
pixels our objects travel per frame; we need to separate the speed
from the direction so we can perform some maths specific to each
value. Fortunately, we can use maths to figure out the speed of our
objects – which we do on lines 110-111, one variable for each object
in the collision – and the direction each object is moving in radians,
on lines 114-115.

Now we have the speed and direction of each circle, we can adjust
them separately to create the
bouncing effect. First, we want
to reverse the direction in
which the objects are travelling;
on lines 118-122, we create a
couple of variables to calculate
new velocities. Here we’ve
recombined the speed and
direction variables of each object
to create new speeds for the
X and Y values of our circles.
When used together, we have
our new vector. But these ones
will point our objects in the
opposite direction of the angle
of incidence – the angle of
reflection. We’ve got the basics
of our bounce.

Below A diagram
displaying angles
on a circle and
their equivalent
values in radians

87

ESSENTIALS

[Chapter One]87 [Chapter Seven]

Motion
Energy cannot be destroyed,
only converted from one form
to another. Motion is a form of
energy and when two objects
collide, an energy transfer
happens between them. Of the
two objects colliding, the faster
object will transfer energy into
the slower object, speeding the
slower object up and slowing
itself down. The two objects will
move off in different directions
and at different speeds than
they were travelling before the
collision, but the net energy of
motion - the total amount of

energy moving the objects - will remain exactly the same; it’s just
in different quantities in different objects now.

On lines 125 and 126, we take into consideration the mass of each
of the objects colliding, as well as the speed. The result is that bigger
objects will take more energy to change direction than smaller ones.
With this in place, we won’t have large objects being sent off at high
velocities by much smaller, faster-moving objects, just like in the real
world. Remember, this is all about simulating physics: if we wanted to
calculate interactions between multiple objects scrupulously accurately
and as if they existed in the real world, we’d need a computer much
more powerful than our Raspberry Pi.

Now we have the new vectors for our colliding objects, all we have to
do is apply them to our objects. We’re only going to apply the X values
we’ve calculated to each object. If we applied both the adjusted X and
Y values to each object, they would bounce and follow the path they
came along. That would be like throwing a ball and having it bounce
straight back into your hand: it would be unnatural. By only applying
the X value to each of our colliding objects, we can create a convincing,
bouncing, deflecting effect, and we do that on lines 129 and 130.

And that’s it: we can simply repeat this for every possible collidable
object in our simulator.

Above An illustration
of the effect of

mass on vectors
in a collision

We haven’t
used the planet
graphics or
much of the
user interaction
code that we
wrote for the
solar system, but,
with a little work,
you should be
able to drop the
handleCollisions()
function into last
chapter’s code
and make your
planets bounce.
Consider it a
challenge!

[QUICK TIP]

88

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[Physics & Collisions]

Left Use the
mouse to create
a new moving
object

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

import pygame, sys, random, math
import pygame.locals as GAME_GLOBALS
import pygame.event as GAME_EVENTS
import pygame.time as GAME_TIME

windowWidth = 1024
windowHeight = 768

pygame.init()
surface = pygame.display.set_mode((
windowWidth, windowHeight))

pygame.display.set_caption(‘Collisions’)

previousMousePosition = [0,0]
mousePosition = None
mouseDown = False

collidables = []
currentObject = None
expanding = True

drawAttractions = False

gravity = 1.0

def drawCollidables():

Collisions.py Download
magpi.cc/
1jQkKYG

http://magpi.cc/1jQkKYG

89

ESSENTIALS

[Chapter One]89 [Chapter Seven]

28.
29.
30.
31.
32.

33.
34.
35.
36.
37.
38.
39.
40.
41.

42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

 for anObject in collidables:
 anObject[“position”][0] += anObject[“velocity”][0]
 anObject[“position”][1] += anObject[“velocity”][1]

 pygame.draw.circle(surface, (255,255,255),(
int(anObject[“position”][0]), int(
anObject[“position”][1])), int(anObject[“radius”]), 0)

def drawCurrentObject():

 global expanding, currentObject

 currentObject[“position”][0] = mousePosition[0]
 currentObject[“position”][1] = mousePosition[1]

 if expanding is True and currentObject[
“radius”] < 30:
 currentObject[“radius”] += 0.2

 if currentObject[“radius”] >= 30:
 expanding = False
 currentObject[“radius”] = 9.9

 elif expanding is False and currentObject[“radius”] > 1:
 currentObject[“radius”] -= 0.2

 if currentObject[“radius”] <= 1:
 expanding = True
 currentObject[“radius”] = 1.1

 currentObject[“mass”] = currentObject[“radius”]

 pygame.draw.circle(surface,(255,0,0),(int(
currentObject[“position”][0]), int(currentObject[
“position”][1])), int(currentObject[“radius”]), 0)

def calculateMovement():

 for anObject in collidables:

 for theOtherObject in collidables:

 if anObject is not theOtherObject:

 direction = (theOtherObject[
“position”][0] - anObject[“position”][0], theOtherObject[

90

 [MAKE GAMES WITH PYTHON]

“position”][1] -anObject[“position”][1])

magnitude = math.hypot(
theOtherObject[“position”][0] - anObject[“position”][0],
theOtherObject[“position”][1] - anObject[“position”][1])
 nDirection = (
direction[0] / magnitude, direction[1] / magnitude)

 if magnitude < 5:
 magnitude = 5
 elif magnitude > 15:
 magnitude = 15

 strength = ((
gravity * anObject[“mass”] * theOtherObject[“mass”]) / (
magnitude * magnitude)) / theOtherObject[“mass”]

 appliedForce = (
nDirection[0] * strength, nDirection[1] * strength)

 theOtherObject[“velocity”][0] -= appliedForce[0]
 theOtherObject[“velocity”][1] -= appliedForce[1]

 if drawAttractions is True:
 pygame.draw.line(
surface, (255,255,255), (anObject[“position”][0],anObject[
“position”[1]), (theOtherObject[“position”][0],theOtherObject[“position”][1]), 1)

def handleCollisions():

 h = 0

 while h < len(collidables):

 i = 0

 anObject = collidables[h]

 while i < len(collidables):

 otherObject = collidables[i]

 if anObject != otherObject:

 distance = math.hypot(otherObject[“position”][0] -

 [MAKE GAMES WITH PYTHON]

[Physics & Collisions]

68.

69.

70.
71.
72.
73.
74.
75.
76.

77.
78.

79.
80.
81.
82.
83.
84.

85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.

91

ESSENTIALS

[Chapter One]91 [Chapter Seven]

103.
104.

105.

106.

107.

108.
109.

110.

111.

112.
113.

114.

115.

116.
117.

118.

119.

120.
121.

122.

123.
124.

anObject[“position”][0], otherObject[
“position”][1] - anObject[“position”][1])

 if distance < otherObject[
“radius”] + anObject[“radius”]:

 # First we get the angle of the
 # collision between two objects
 collisionAngle = math.
atan2(anObject[“position”][1] - otherObject[“position”][1],
anObject[“position”][0] - otherObject[“position”][0])

 # Then we need to calculate the
 # speed of each object
 anObjectSpeed = math.
sqrt(anObject[“velocity”][0] * anObject[“velocity”][0] +
anObject[“velocity”][1] * anObject[“velocity”][1])
 theOtherObjectSpeed = math.
sqrt(otherObject[“velocity”][0] * otherObject[“velocity”][0]
+ otherObject[“velocity”][1] * otherObject[“velocity”][1])

 # Now, we work out the direction
 # of the objects in radians
 anObjectDirection = math.
atan2(anObject[“velocity”][1], anObject[“velocity”][0])
 theOtherObjectDirection = math.
atan2(otherObject[“velocity”][1], otherObject[“velocity”]
[0])

 # Now calculate new X/Y values
 # of each object for collision
 anObjectsNewVelocityX =
anObjectSpeed * math.cos(anObjectDirection - collisionAngle)
 anObjectsNewVelocityY =
anObjectSpeed * math.sin(anObjectDirection - collisionAngle)

 otherObjectsNewVelocityX =
theOtherObjectSpeed * math.cos(theOtherObjectDirection -
collisionAngle)
 otherObjectsNewVelocityY =
theOtherObjectSpeed * math.sin(theOtherObjectDirection -
collisionAngle)

 # We adjust the velocity based
 # on the mass of the objects

92

 [MAKE GAMES WITH PYTHON]

[Physics & Collisions]

125.

126.

127.
128.
129.

130.

131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.

 anObjectsFinalVelocityX
= ((anObject[“mass”] - otherObject[“mass”]) *
anObjectsNewVelocityX + (otherObject[“mass”] +
otherObject[“mass”]) * otherObjectsNewVelocityX)/
(anObject[“mass”] + otherObject[“mass”])
 otherObjectsFinalVelocityX =
((anObject[“mass”] + anObject[“mass”]) * anObjectsNewVelocityX
+ (otherObject[“mass”] - anObject[“mass”]) *
otherObjectsNewVelocityX)/(anObject[“mass”] + otherObject[“mass”])

 # Now we set those values
 anObject[
“velocity”][0] = anObjectsFinalVelocityX
 otherObject[
“velocity”][0] = otherObjectsFinalVelocityX

 i += 1

 h += 1

def handleMouseDown():
 global currentObject

 currentObject = {
 “radius” : 3,
 “mass” : 3,
 “velocity” : [0,0],
 “position” : [0,0]
 }

def quitGame():
 pygame.quit()
 sys.exit()

‘main’ loop
while True:

 surface.fill((0,0,0))
 mousePosition = pygame.mouse.get_pos()

 # Handle user and system events
 for event in GAME_EVENTS.get():

 if event.type == pygame.KEYDOWN:

 [MAKE GAMES WITH PYTHON]

93

ESSENTIALS

[Chapter One]93 [Chapter Seven]

162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.

193.
194.

195.

196.
197.
198.
199.

200.
201.
202.

 if event.key == pygame.K_ESCAPE:
 quitGame()

 if event.type == pygame.KEYUP:

 if event.key == pygame.K_r:
 collidables = []
 if event.key == pygame.K_a:
 if drawAttractions is True:
 drawAttractions = False
 elif drawAttractions is False:
 drawAttractions = True

 if event.type == pygame.MOUSEBUTTONDOWN:
 mouseDown = True
 handleMouseDown()

 if event.type == pygame.MOUSEBUTTONUP:
 mouseDown = False

 if event.type == GAME_GLOBALS.QUIT:
 quitGame()

 calculateMovement()
 handleCollisions()
 drawCollidables()

 if currentObject is not None:
 drawCurrentObject()

 # If our user has released mouse, add the new
 # new anObject to the collidables list and
 # let gravity do its thing
 if mouseDown is False:
 currentObject[“velocity”][0] = (
mousePosition[0] - previousMousePosition[0]) / 4
 currentObject[“velocity”][1] = (
mousePosition[1] - previousMousePosition[1]) / 4
 collidables.append(currentObject)
 currentObject = None

 # Store the previous mouse coordinates to create a
 # vector when we release a new anObject
 previousMousePosition = mousePosition

 pygame.display.update()

94

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

ESSENTIALS

In chapter eight, we make a simple
barrel-dodging game using classes.

 [MAKE GAMES WITH PYTHON]

94[Classes]

[CHAPTER EIGHT]

CLASSES

95

ESSENTIALS

[Chapter One]95 [Chapter Eight]

Going further with game design
We are now over three quarters of the way through this book, which
you can look at in two ways: on one hand, we are drawing close to the
end, but on the other, we still have several opportunities to learn and
make something amazing. We’ve put together so much already at this
point: we’ve learned all about how Pygame draws shapes and images,
how we can manipulate sounds and control events with our keyboards
and mouse, we’ve made buttons and start screens and life bars and
floors that travel too quickly. We even built a solar system with gravity,
which is no mean feat. Everything, however, has been leading up to
one challenge: a final game, which we’ll be making in chapters nine
and ten. That gives us one last chance to round up all of the loose ends
and learn everything we need to make that game in this chapter.

You may wonder what more we could possibly have to learn about?
Well, in this piece we’re going to cover Python classes. On the surface,
this may not sound as exciting as making a solar system, but it is
nevertheless an extremely important part of making games, especially
in Python. We won’t be looking too closely at the code for this particular
game; instead, we will concentrate on studying the structures used
to make the game work, and use the game code to demonstrate the
principle. If you just want to work through the code and get it running
for fun, though, you can find all of the code and images you will need
on GitHub (github.com/seanmtracey/Games-with-Pygame).

http://github.com/seanmtracey/Games-with-Pygame

96

 [MAKE GAMES WITH PYTHON]

[Classes]

 [MAKE GAMES WITH PYTHON]

What is a class?
Throughout this series, we’ve come across many different data types,
including variables, lists and dictionaries. Each data type exists to help
us organise and store data in a way that makes it easy for us to reuse
and reference throughout our games. A class is another such structure
that helps us to organise our code and objects. Classes are designed
to be a kind of blueprint for bits of code that might need to be reused
again and again. Let’s compare and contrast classes with dictionaries.
To make a dictionary that, let’s say, describes a rectangle, we could
write something like this:

aRectangle = {
 “x” : 5,
 “y” : 10,
 “width” : 20
 “height” : 30
 }

That would certainly do the job; we have everything we need to make
a rectangle: width, height, x, and y. It’s great, but what if we want to
make another rectangle? We could simply write it again:

rectangleOne = {
 “x” : 5,
 “y” : 10,
 “width” : 20
 “height” : 30
}

rectangleTwo = {
 “x” : 5,
 “y” : 10,
 “width” : 20
 “height” : 30
}

97

ESSENTIALS

[Chapter One]97 [Chapter Eight]

But that’s a little messy. Instead, we could create a function to make
rectangles for us:

def rectangleMaker(width, height, x, y):

 return {
 “x” : x,
 “y” : y,
 “width” : width,
 “height” : height
 }

rectangleOne = rectangleMaker(20, 15, 30, 50)
rectangleOne = rectangleMaker(10, 35, 40, 70)

That’s better, but in order to make rectangles a more convenient
thing to create quickly, we’ve had to write a function which builds
one and passes the new ‘rectangle’ (it’s not really a rectangle, it’s
a dictionary describing something that could be a rectangle) back
to whatever bit of code wanted it. This does the job, and that’s how
we’ve done things so far, but it’s not very semantic. Classes do all

Right Think
of classes as

a blueprint for
things that can be

made and used
many times

98

 [MAKE GAMES WITH PYTHON]

[Classes]

 [MAKE GAMES WITH PYTHON]

that we just looked at and more: they can keep track of themselves
and their properties; they can contain functions that can execute
code that affects the properties in a clever way, rather than having
to trigger things manually. Classes can also be ‘extended’; that is,
a class can be made up of several other classes to make something
with the properties and abilities of all the other classes before it. If
we were to make squares with a class, we would first define what a
rectangle is with a class:

class Rectangle():

 x = 0
 y = 0
 width = 0
 height = 0

 def __init__(self, x, y, width, height):
 self.x = x
 self.y = y
 self.width = width
 self.height = height

Our class Rectangle has four properties – x, y, width, and height –
just like our dictionaries, but it also has a function, __init__. This is
a special function; when we want to create a new rectangle, we simply
call Rectangle and pass it the values we want to use into it:

rectangleOne = Rectangle(0, 5, 20, 30)
rectangleTwo = Rectangle(0, 5, 20, 30)

When we call Rectangle like this, we are triggering something
called ‘instantiation’. In its simplest terms, instantiation means we’re
creating something new from a blueprint (our class) that can operate
independently from other objects in our code. When we instantiate

99

ESSENTIALS

[Chapter One]99 [Chapter Eight]

a new Rectangle, that special function __init__ will be called and
will receive the variables we pass through to it. There’s something a
little different here, though: our __init__ function is expecting five
arguments to be passed to it, but we only passed four, and Python
didn’t complain. Why is this? When we instantiate a new Rectangle,
self gets passed through to the __init__ function by the class itself
and it refers to its ‘self’. With self, we can create as many Rectangles
as we like and have functions inside of the class reference itself, set
values, and run code that only affects itself. It’s this useful property
that makes classes far more useful than standard dictionaries. We can
also reference the properties and functions of each instance of our
Rectangles using ‘.’ instead of having to use [].

This is Fred
So, now we have a grip on what a class is: it’s a blueprint full of code
and variables that can be used many times across our Python projects.
This makes them great for games, because we can create and control
objects dynamically as and when we need them, rather than having to
specify everything by hand, like clouds or cars or buildings or trees or
any other object which has variety. That said, this doesn’t mean we can
only use classes when we expect to make more than one of a thing.

Fred is our game avatar. He works from nine to five in a barrel factory
that, frankly, flouts health and safety regulations regarding the storing
of barrels in overhead containers. Fred is a simple fellow, so much so
that we can describe everything about Fred and all he does in a Python
class - but there’s only one Fred; nobody else would ever agree to the
monotonous labour of the barrel factory. Fred is a one-off.

Right This is Fred.
He's our game avatar
and he's made up of
a class. There's only

one Fred

100

 [MAKE GAMES WITH PYTHON]

[Classes]

 [MAKE GAMES WITH PYTHON]

class Fred():

 # Fred’s preset variables
 x = 0
 y = 625

 isHit = False
 timeHit = 0
 health = 100

 leftImage = None
 rightImage = None
 leftImageHit = None
 rightImageHit = None

 direction = 1
 speed = 8
 pygame = None

 def reset(self, x):
 # Code for getting Fred ready for

 # another day of dodging barrels

 def moveLeft(self, leftBound):
 # Move Fred to the left

 def moveRight(self, rightBound):
 # Move Fred to the right

 def loadImages(self, pygame):
 # Get the image we need to draw Fred

 def draw(self, surface, time):
 # Draw Fred

 def __init__(self, x, pygame, surface):
 # Create Fred and acquaint
 # him with himself

Download
magpi.cc/
1jQkU2b

http://magpi.cc/1jQkU2b

101

ESSENTIALS

[Chapter One]101 [Chapter Eight]

‘We are all stardust’… except for Fred. He’s a class; this is the
blueprint for Fred’s existence and this is him at his most basic.
As we’ve said, classes are great when you need to control loads
of the same but slightly different things, but classes are great
for abstracting (or hiding away) bits of code that we use a lot but
aren’t useful everywhere and aren’t used all of the time. So how
do we create Fred? Our Fred class lives in the objects.py file of our
projects, so on line 5 of freds_bad_day.py, we import objects. This
file contains our Fred and our Barrel class (which we’ll look at
in a little bit). Once we’ve imported the objects file, we can create
Fred with the following code:

Fred = objects.Fred(windowWidth / 2)

The argument we passed through will set Fred’s x coordinate – we
always want Fred to start in the middle of the screen, so that’s what
we’ve passed through here. Now ‘Fred’ has been instantiated, using
the Fred variable, we can access all of Fred’s properties and methods.
If we want to know where Fred is now, we can simply call:

Fred.x
> 500

If we want to move Fred to the left, we can just += the x property:

Fred.x += 5

Fred also has a method called moveLeft(); instead of manually
setting the x coordinate, we can call the moveLeft method instead.
This looks tidier, makes it obvious what’s happening when the code
is being read by somebody else, and allows us do more than one thing
when we move Fred to the left:

102

 [MAKE GAMES WITH PYTHON]

[Classes]

 [MAKE GAMES WITH PYTHON]

Fred.moveLeft()

Instead of adding an arbitrary number, moveLeft() checks Fred’s
speed property and adds that to Fred’s x property. It also checks
what direction Fred is moving in and sets the direction property
accordingly. This means when it comes to drawing Fred, we can draw
him facing the correct direction without having to manually check
which direction he’s facing every time.

def moveLeft(self, leftBound):

 if self.direction is not 0:
 self.direction = 0

 if((self.x - self.speed) > leftBound):
 self.x -= self.speed

It’s simple to use, but it saves us a lot of trouble. In our freds_bad_
day.py file, the code that actually affects Fred is four lines long:

Fred.draw()
Fred.moveLeft()
Fred.moveRight()
Fred.loadImages()

That’s much simpler than having functions in our code that could be
accessed by any function but really only need to be used for one object.

This is Fred’s nemesis
‘Do you know what nemesis means? A righteous infliction of
retribution manifested by an appropriate agent.’ The common barrel
is the blight of Fred’s life. He spends his day shift running left to

103

ESSENTIALS

[Chapter One]

right and back again, cursing whichever middle-manager it was who
thought storing a seemingly unlimited supply of barrels 20 feet above
the ground would be a risk-free idea. Unlike Fred, there are many
barrels, but at their core, they’re both the same. Fred and Barrel are
both classes, but Fred is only instantiated once, whereas our Barrel
is instantiated potentially hundreds of times (depending on how bad
Fred’s day is).

class Barrel():

 slots = [(4, 103), (82, 27), (157, 104), (
234, 27), (310, 104), (388, 27), (463, 104), (
539, 27), (615, 104), (691, 27), (768, 104), (
845, 27), (920, 104)]
 slot = 0
 x = 0
 y = 0

 image = None
 brokenImage = None

 isBroken = False
 timeBroken = 0
 needsRemoving = False

 size = [33,22]

Right This is a barrel.
There are many like

it, but this one is ours

103 [Chapter Eight]

104

 [MAKE GAMES WITH PYTHON]

 ratio = 0.66

 vy = 1.5
 gravity = 1.05
 maxY = 20

 def split(self, time):
 self.isBroken = True
 self.timeBroken = time
 self.vy = 5
 self.x -= 10

 def checkForCollision(self, fred):
 # Check whether barrel is colliding

 def loadImages(self, pygame):
 # Load the images for Fred

BASH! CRASH! THUMP!
Much to Fred’s dismay, there’s
more than one barrel in the world,
and we need a place to keep track of
them. A new barrel is created after a
certain amount of time passes (this
amount of time gets smaller as the
game progresses), and we append
that barrel to the Barrels list at
the top of our freds_bad_day.py
file. Every time our ‘main’ loop
works through itself, we iterate
through the Barrels list, move
the barrels, and check if they’ve hit
Fred.We do this with each barrel’s
checkForCollision() method.
Our barrel doesn’t care about what

 [MAKE GAMES WITH PYTHON]

Above A barrel splitting when it hits Fred

[Classes]

105

ESSENTIALS

[Chapter One]

it’s hitting unless it’s Fred: this, however, is very important as the barrel
needs to know when it has hit Fred so that it can split in half. One of
the clever things about Fred (and about classes as a whole) is that
once we’ve instantiated them, we can pass that reference around
our code to other classes and functions as we like. When we call
checkForCollisions(), we pass Fred as an argument. This way,
the barrel can check it current position and compare it to Fred’s. If
there’s a collision, the barrel will return True, then our main loop
can take over and split our barrel in half, reduce Fred’s health bar,
and tell Fred that he should frown - providing Fred is still standing,
otherwise the main loop will end the game.

hasCollided = barrel.checkForCollision(Fred);

if hasCollided is True:
 barrel.split(timeTick)
 Fred.isHit = True
 Fred.timeHit = timeTick
 if Fred.health >= 10:
 Fred.health -= 10
 else :
 gameOver = True
 gameFinishedTime = timeTick

The cleanup
When our barrel has managed to hit poor Fred, it splits in two and
continues to fall off the screen. When our barrel goes off screen,
we should really delete it, because we don’t need it any more and
it’s eating up our Raspberry Pi’s resources. What would be ideal is
if our barrel could self-destruct, as it were, and remove itself from
our game, but our barrel isn’t keeping track of itself inside the game
state; the game is keeping track of the barrel in the game and the
barrel is looking after itself. This means that once our barrel has
split in two, we need a way to reference it so we can delete it. If we
simply delete the barrel at the index it’s at in the Barrels list, all
of our remaining barrels will flash while they shift position in the

105 [Chapter Eight]

106

 [MAKE GAMES WITH PYTHON]

list. Instead, we add the barrel’s index to the barrelsToRemove
list and once we’ve finished drawing all of our barrels, we remove
all the split barrels before they’re drawn again. No mess, just
smooth cleanup.

 def move(self, windowHeight):
 # Move our barrel

 def draw(self, surface, pygame):
 # Draw our barrel

 def __init__(self, slot):
 # Create a barrel and slot it in the right place

The Barrel class is simpler than our Fred class; this is because it
needs to do less. Our barrel only needs to move down and accelerate.
When we instantiate Fred, we passed through the x coordinate that
we wanted Fred to start off from. We don’t want our barrels to be able
to appear just anywhere along the x/y axis of our game; instead, we
want them to appear in one of the 13 slots at the top of our game. Our
Barrel class has a slots list that contains x and y coordinates for
each of the barrel holes at the top of our game window. When we want
to create a barrel, we don’t pass the x coordinate; instead, we pass a
random integer between 0 and 12 (remember, computers count from
0, so 0 is the first item in a list) and the coordinates for that slot will
become the location for that barrel. All of this happens in that handy
__init__ function.

if barrel.needsRemoving is True:
 barrelsToRemove.append(idx)

for index in barrelsToRemove:
 del Barrels[index]

 [MAKE GAMES WITH PYTHON]

[Classes]

107

ESSENTIALS

[Chapter One]107 [Chapter Eight]

Recap
There’s been a lot to take in for this chapter, so let’s have a recap before
we start looking forward building our space shooter game in the final two
chapters. We have learned that a class is like a blueprint of code for an
object that we want to use. We can use classes once or thousands of times.
Using classes helps us keep our code tidy and reusable. When we use a
class, we create a new instance of that class which is called ‘instantiation’.
Each instance of a class can reference itself and so long as it’s in the
correct scope, any other object can read the properties of our class and can
trigger the methods that the class may have. Each method has access to a
reference to itself when it’s called, even if nothing is passed; this reference
will be the first argument passed, but we can pass as many arguments as
we want to use, just like any other method.

In chapters nine and ten, we are going to use absolutely everything
we’ve learned so far to make an exciting space shooter game. There will be
spaceships, lasers, gravity, sound effects and all sorts of other thrills and
spills. You’ll love it!

Freds_bad_day.py
01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.

import pygame, sys, random, math
import pygame.locals as GAME_GLOBALS
import pygame.event as GAME_EVENTS
import pygame.time as GAME_TIME
import objects

windowWidth = 1000
windowHeight = 768

pygame.init()
pygame.font.init()
surface = pygame.display.set_mode((windowWidth,
windowHeight), pygame.FULLSCREEN)

pygame.display.set_caption(‘Fred\’s Bad Day’)
textFont = pygame.font.SysFont(“monospace”, 50)

gameStarted = False
gameStartedTime = 0
gameFinishedTime = 0
gameOver = False

Download
magpi.cc/
1jQkU2b

http://magpi.cc/1jQkU2b

108

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

startScreen = pygame.image.load(“assets/startgame.png”)
endScreen = pygame.image.load(“assets/gameover.png”)

background = pygame.image.load(“assets/background.png”)
Fred = objects.Fred(windowWidth / 2)
Barrels = []
lastBarrel = 0
lastBarrelSlot = 0
barrelInterval = 1500

goLeft = False
goRight = False

def quitGame():
 pygame.quit()
 sys.exit()

def newBarrel():
 global Barrels, lastBarrel, lastBarrelSlot

 slot = random.randint(0, 12)

 while slot == lastBarrelSlot:
 slot = random.randint(0, 12)

 theBarrel = objects.Barrel(slot)
 theBarrel.loadImages(pygame)

 Barrels.append(theBarrel)
 lastBarrel = GAME_TIME.get_ticks()
 lastBarrelSlot = slot

Fred.loadImages(pygame)

‘main’ loop
while True:

 timeTick = GAME_TIME.get_ticks()

 if gameStarted is True and gameOver is False:

 surface.blit(background, (0, 0))

 Fred.draw(surface, timeTick)

 barrelsToRemove = []

 for idx, barrel in enumerate(Barrels):
 barrel.move(windowHeight)

[Classes]

109

ESSENTIALS

[Chapter One]109 [Chapter Eight]

71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.

97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.

113.
114.
115.
116.

 barrel.draw(surface, pygame)

 if barrel.isBroken is False:

 hasCollided = barrel.checkForCollision(Fred)

 if hasCollided is True:
 barrel.split(timeTick)
 Fred.isHit = True
 Fred.timeHit = timeTick
 if Fred.health >= 10:
 Fred.health -= 10
 else :
 gameOver = True
 gameFinishedTime = timeTick

 elif timeTick - barrel.timeBroken > 1000:

 barrelsToRemove.append(idx)
 continue

 if barrel.needsRemoving is True:
 barrelsToRemove.append(idx)
 continue

 pygame.draw.rect(surface, (175,59,59), (
0, windowHeight - 10, (windowWidth / 100) * Fred.health, 10))

 for index in barrelsToRemove:
 del Barrels[index]

 if goLeft is True:
 Fred.moveLeft(0)

 if goRight is True:
 Fred.moveRight(windowWidth)

 elif gameStarted is False and gameOver is False:
 surface.blit(startScreen, (0, 0))

 elif gameStarted is True and gameOver is True:
 surface.blit(endScreen, (0, 0))
 timeLasted = (
gameFinishedTime - gameStartedTime) / 1000

 if timeLasted < 10:
 timeLasted = “0” + str(timeLasted)
 else :

110

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

117.
118.
119.

120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.

140.

141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.

 timeLasted = str(timeLasted)

 renderedText = textFont.render(
timeLasted, 1, (175,59,59))
 surface.blit(renderedText, (495, 430))

 # Handle user and system events
 for event in GAME_EVENTS.get():

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:
 quitGame()
 elif event.key == pygame.K_LEFT:
 goLeft = True
 goRight = False
 elif event.key == pygame.K_RIGHT:
 goLeft = False
 goRight = True
 elif event.key == pygame.K_RETURN:
 if gameStarted is False and gameOver is False:
 gameStarted = True
 gameStartedTime = timeTick
 elif gameStarted is True and gameOver is True:
 Fred.reset(windowWidth / 2)

 Barrels = []
 barrelInterval = 1500

 gameOver = False

 if event.type == pygame.KEYUP:

 if event.key == pygame.K_LEFT:
 goLeft = False
 if event.key == pygame.K_RIGHT:
 goRight = False

 if event.type == GAME_GLOBALS.QUIT:
 quitGame()

 pygame.display.update()

 if GAME_TIME.get_ticks() - lastBarrel > barrelInterval \
and gameStarted is True:
 newBarrel()
 if barrelInterval > 150:
 barrelInterval -= 50

[Classes]

111

ESSENTIALS

[Chapter One]111 [Chapter Eight]

Objects.py
01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

class Fred():

 x = 0
 y = 625

 isHit = False
 timeHit = 0
 health = 100

 leftImage = None
 rightImage = None
 leftImageHit = None
 rightImageHit = None

 direction = 1
 speed = 8
 pygame = None

 def reset(self, x):
 self.x = x
 self.y = 625

 self.isHit = False
 self.timeHit = 0
 self.health = 100

 self.direction = 1
 self.speed = 8
 self.pygame = None

 def moveLeft(self, leftBound):

 if self.direction is not 0:
 self.direction = 0

 if((self.x - self.speed) > leftBound):
 self.x -= self.speed

 def moveRight(self, rightBound):

 if self.direction is not 1:
 self.direction = 1

 if((self.x + self.speed) + 58 < rightBound):
 self.x += self.speed

 def loadImages(self, pygame):

Download
magpi.cc/
1jQkU2b

http://magpi.cc/1jQkU2b

112

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[Classes]

48.

49.

50.

51.

52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.

 self.leftImage = pygame.image.load(
“assets/Fred-Left.png”)
 self.rightImage = pygame.image.load(
“assets/Fred-Right.png”)
 self.leftImageHit = pygame.image.load(
“assets/Fred-Left-Hit.png”)
 self.rightImageHit = pygame.image.load(
“assets/Fred-Right-Hit.png”)

 def draw(self, surface, time):

 if time - self.timeHit > 800:
 self.timeHit = 0
 self.isHit = False

 if self.direction is 1:
 if self.isHit is False:
 surface.blit(self.rightImage, (self.x, self.y))
 else :
 surface.blit(self.rightImageHit, (
self.x, self.y))
 else :
 if self.isHit is False:
 surface.blit(self.leftImage, (self.x, self.y))
 else :
 surface.blit(self.leftImageHit, (self.x, self.y))

 def __init__(self, x):
 self.x = x

class Barrel():

 slots = [(4, 103), (82, 27), (157, 104), (234, 27), (310, 104), (388, 27), (
463, 104), (539, 27), (615, 104), (691, 27), (768, 104), (845, 27), (920, 104)]
 slot = 0
 x = 0
 y = 0

 image = None
 brokenImage = None

 isBroken = False
 timeBroken = 0
 needsRemoving = False

 size = [33,22]
 ratio = 0.66

 vy = 1.5
 gravity = 1.05

113

ESSENTIALS

[Chapter One]113 [Chapter Eight]

92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.

108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.

119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.

 maxY = 20

 def split(self, time):
 self.isBroken = True
 self.timeBroken = time
 self.vy = 5
 self.x -= 10

 def checkForCollision(self, fred):

 hitX = False
 hitY = False

 if fred.x > self.x and fred.x < self.x + 75:
 hitX = True
 elif fred.x + 57 > self.x and fred.x + 57
< self.x + 75:
 hitX = True
 if fred.y + 120 > self.y and fred.y < self.y:
 hitY = True
 elif fred.y < self.y + 48:
 hitY = True
 if hitX is True and hitY is True:
 return True

 def loadImages(self, pygame):
 self.image = pygame.image.load(“assets/Barrel.png”)
 self.brokenImage = pygame.image.load(
“assets/Barrel_break.png”)

 def move(self, windowHeight):

 if self.vy < self.maxY:
 self.vy = self.vy * self.gravity
 self.y += self.vy

 if self.y > windowHeight:
 self.needsRemoving = True

 def draw(self, surface, pygame):
 if self.isBroken is True:
 surface.blit(self.brokenImage, (self.x, self.y))
 else :
 surface.blit(self.image, (self.x, self.y))

 def __init__(self, slot):
 self.slot = slot
 self.x = self.slots[slot][0]
 self.y = self.slots[slot][1] + 24

114

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

ESSENTIALS

In chapter nine, we make the first half
of our final game project, putting to use
everything we’ve learned so far.

 [MAKE GAMES WITH PYTHON]

114[The Aliens are trying to kill me]

[CHAPTER NINE]
THE ALIENS
ARE TRYING
TO KILL ME

115

ESSENTIALS

[Chapter One]115 [Chapter Nine]

e have covered a wealth of material on the subject of making
games with Pygame, and it is time to put everything we have
learned into practice. Over the final two chapters, we are going

all of our new knowledge to make a space-shooter game. Using our
mouse, we’re going to control a small but feisty spaceship which will
fend off wave after wave of merciless alien hordes, by blasting them
with a lethal green laser-ray. In chapter ten, we will also learn how to
make levels with organised structures, instead of the random placement
of enemies that we will have in this chapter’s version of our game.

We’ll also add a game-over screen, some UI elements like health and
ammunition counters, and we’ll add some shields to our space vessel
too, because who doesn’t like shields?

Since we’re not learning anything new this time, we don’t need to
explore any abstract game or programming concepts before we can
make something; we’re just going to walk through the code and figure
out what we’ve done and why we’ve done it that way. So let’s look at
the code first, and specifically, at the structure of our code. You may
notice that the code for our game is not in one large file as has been
the case for most of our previous games. Instead, it has been split
across three separate files: one for our main game logic (we’ve called
it aliens.py), one that contains the code for our spaceships
(ships.py), and one file that contains all of the information about
our lasers and bullets (projectiles.py).

W

Right The start
screen for our

final game

116

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[The Aliens are trying to kill me]

aliens.py is where we will run our game from. It is responsible for
handling how we react to user interactions and game events, such
as moving and firing the ship, creating new enemies, and triggering
sounds. ships.py and projectiles.py will be imported by aliens.py, and
will be used to create our own spaceship, the enemy space ships, and
the projectiles of both of these types of ship.

Aliens.py
Let’s break down the structure of aliens.py first. This is where
everything in the game will start from, so it makes sense that we
should too. As in all of our previous programs, we have our import
statements on lines 1-5. Here, we’re importing all of the standard
Python and Pygame modules that we’ll need to make our game do its
thing. We also import our own file, ships.py, which sits in the same
folder as our aliens.py folder, with import ship.

On lines 7-39, we have all of the global variables that we’ll use
to keep track of the various objects and events that occur in our
game. These are ‘global’ variables because they don’t fall within the
scope of any function in our program, which means that that any
function in our game can read and change the variables as they like.

Above A screenshot
of the game that
we’ll make in this
half of the tutorial

117

ESSENTIALS

[Chapter One]117 [Chapter Nine]

In a lot of circumstances this is frowned upon, but for games it’s
perfect. Not every variable we need to make this game is declared
here; there are quite a few more in our ships and projectile classes
which we will get to shortly. Remember, using classes is a great
way to keep properties that are relevant to the thing we’re using all
wrapped up nicely together.

In previous chapters, we’ve always used a main loop to update our
game state and draw the items and objects about the place as we’ve
needed. We’re breaking that habit this time. Instead of having the
main loop be the sole place where game stuff happens, we’re going to
create two extra functions and split up the work between them. These
two functions are updateGame() and drawGame(), and their purposes
are pretty simple. updateGame() (lines 41-75) will always be called
before drawGame() (lines 77-84); it will update everything that has
changed since the last loop through our main function. It will also
calculate the new positions and statuses of all of our game objects if
they have changed, and will then update those properties. Straight
after that, drawGame() is called; this is responsible only for drawing
the elements of the game that may or may not have been changed.
drawGame() could update different properties if we wanted it to, but
that leads to messy code with multiple places where things can go
wrong. This way, if something breaks in our game logic, we’ll know
that it most probably broke in updateGame() and not somewhere
else. You’ll notice that drawGame() is a good deal smaller than
updateGame(); this is not necessarily because its job is simpler, but
because all of the drawing onto our surface has been abstracted away
to individual classes. Each object is responsible for drawing itself, but
drawGame() has to tell them to do it.

Last, but certainly by no means least, we have our ‘main loop’ on
lines 91-135. Now that our main loop is no longer responsible for
updating or drawing our game events, it’s mainly concerned with
detecting the state of our mouse and timing events, like creating a new
enemy spaceship after a certain amount of time. In a way, our main
loop is still responsible for updating and drawing our game, in that it
calls updateGame() and drawGame() at the correct time based on our
game variables; the responsibilities have simply been abstracted so our
code is a little more decipherable to people who didn’t write the code or
read this tutorial.

This is the first
of two halves of
our final game.
Everything works
but doesn’t look
too polished yet,
and the game
mechanics are
simple, but
remember: we’re
setting the stage
for chapter 10.

[QUICK TIP]

118

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[The Aliens are trying to kill me]

Ships.py
On line 32 of aliens.py, we have the variable ship. This is where we
create our player’s spaceship. With it, we shall defend the Earth, our
solar system and, yes, even the galaxy from the tyranny of kinds of
alien evil! This variable instantiates our Player ship class that we
imported from our ship.py file. If you take a look at ship.py, you’ll
see it’s almost as big as aliens.py. That should make sense: after all,
spaceships are complicated things. In our ships.py file, we have two
different classes: our Player class (remember, class names usually
start with a capital letter) and our Enemy class. The Player class is
where all of the logic for moving, firing, drawing, and damaging our
own spaceship happens. We also keep track of the sound effects and
images used by our spaceship as we play our game. Almost all of
these functions will be called by the code in our aliens.py file, but our
ship can call functions on itself too. For example, when we initialise
our Player class, we call the loadImages() function inside of our
__init__ function with self.loadImages() so that we load our ship
images straight away, rather than causing a delay when we need to
draw our ship for the first time.

Our Enemy class is much, much smaller than our Player class. This
does not, however, mean it is less complicated. If you look at line 73 of
ships.py, you’ll see that when we call the Enemy class, we pass through

Above The two ships
for our game: our
ship (left) and an
alien ship (right)

119

ESSENTIALS

[Chapter One]119 [Chapter Nine]

the Player class as an argument. You may be wondering why we
do this: although we have not been able to cover it before, it’s a
really neat thing that classes can do. When we instantiate a class,
if we include the name of another class in its declaration when we
actually write the code, it will get all of the properties and classes of
the class that has been passed through. We do this because, despite
being on opposite sides of our epic cosmic war of wits and lasers,
at its core, a spaceship is a spaceship like any other but with a few
tweaks here and there.

So, even though our Enemy class doesn’t have checkForHit,
registerHit and checkForBullets methods typed out, it still has
those methods - it just gets them from Player. This enables us to
use code in different ways across multiple objects, but we can also
overwrite some of those methods
and add new ones as they’re
needed for our Enemy class. For
example, our Enemy class has
a tryToFire() function. Our
Player class doesn’t have this;
only our Enemy class does. We can
also set different values for the
same variables in our Enemy class:
our bulletSpeed value in Enemy
is 10, whereas it’s -10 in our
Player class. And, of course, the
image we’re using for each type of
ship is different.

Projectiles.py
Continuing our use of classes,
we have our projectiles Bullet
class in our projectiles.py file.
Note that the latter isn’t imported
into our game in aliens.py but
in ships.py, because our game
doesn’t need bullets - our ships
do. Our Bullet class is far simpler
than our two ship classes: we have

Above The two different projectiles for our
ship types: our projectile (top) and the alien
projectile (bottom)

The sounds
for this tutorial
were created
using BFXR
(bfxr.net), a
nifty little tool
designed for
creating sound
effects that
resemble those
from games of
times long past.
Go and have a
play with it!

[QUICK TIP]

120

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[The Aliens are trying to kill me]

only three methods and a range of variables to affect and track each
bullet: move, draw, and loadImages. How do the bullets know when they
are hitting something? Because each bullet created in our game is stored
in the bullets list in each of our ships, we use the ships class method
checkForHit to see whether or not any of the bullets hit anything.
There’s no real reason for doing it this way - we could have each bullet be
responsible for checking if it hit something - but it does make sense to
have each ship keep an eye on whether the bullets it fired hit something.

Game events
Now we know what each file is responsible for in our latest game, we can
start walking through how they all come together. As soon as our game
is run, the global variables are set and all of the imports between lines
1 and 39 are applied. Let’s take a look at our main loop starting on line
90 in aliens.py. The first thing we do on each of our game loops is to set
three variables: timeTicks, mousePosition, and mouseStates. The
timeTicks variable keeps track of how many milliseconds have passed
since we started the game. We can use this to set variables or create
new objects after a set amount of time, as we do on line 128, where we
create a new enemy ship after every 1.5 seconds of the game playing.
mousePosition is where we store the position of the mouse in our game
window. Remember, our mouse position is relative to the top-left of our
Pygame window. We use the mouse to move our ship around in our game,
so we need to keep a constant track of where our mouse is; storing our
mousePosition at the start of each loop saves us a little time and typing
if we need to check the position more than once every loop. mouseStates
is where we save the ‘state’ of our mouse buttons, namely which buttons
are being pressed down and which ones aren’t. We use the left mouse
button to fire our weapons and start our game so having that information
stored globally means we can check against one variable rather than
calling pygame.mouse.get_pressed() multiple times.

The first thing we do on
each loop of our game
is set three variables...

121

ESSENTIALS

[Chapter One]121 [Chapter Nine]

Starting our game
Right after the first three variables, we come across an if-else
statement. This will check whether or not our game has started;
after all, we want to have a title and game over screen, so we need
to know when to show them. The first check on line 97 will see
if we are running a game already. If so, it’ll update and then draw
the game (we’ll go through those shortly); otherwise, we go to the
next check in our if-else statement. On line 102, if our game hasn’t
started yet and it hasn’t finished either, then we must have just
started the program, so let’s draw the start screen. On line 103, we
blit our start screen image onto our game surface. This image has
a Start button drawn on it, so next, on line 105, we check whether
or not the left mouse button has been clicked and if it has, we
check to see if the click occurred inside the button on line 107. If
both of these conditions are met, our gameStarted variable is set
to True and on the next loop, our game will start: time to kill the
alien scourge!

Above The white
boxes around our
spaceships are a

visual representation
of the ‘hit test’ that

we’re running to
check if a projectile

has hit a ship

122

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

[The Aliens are trying to kill me]

Updating the game state
The game has started, the onslaught begins, but how do we go about
saving our kind? Line by line, of course! Lines 41-75 of aliens.py contain
our updateGame() method. Here, we update the position of our ships,
the enemy ships, and fire our weapons if we click a mouse. On lines
45-49, we check whether or not our mouse is being clicked. If it is, we
fire our weapon, but we don’t want our guns to keep firing for as long
as we hold down the button; we want to fire on each click, so we set the
mouseDown variable to True. This way, we can be certain that we only
fire once per click, not willy-nilly. When we fire our weapon, we play
a laser sound effect. It may be true that in space no-one can hear you
scream, but in Star Wars it’s infinitely cooler to have blaster sounds going
off all around you. Much like when we add an image to our surface to see
it drawn on our screen, we add our sound to our mixer to have it played
out through our speakers (on lines 31-33 of ships.py).

Next, on line 51, we set the position of the ship to match where our
mouse is. We subtract half of the width of our ship from our mouse X
coordinate, so the ship’s centre aligns with our mouse pointer.

That’s everything to do with our ship updated, so we can move on to
the enemy ships. Unlike our single valiant spaceship there are many,
many enemy spaceships. We need to update the position and state of
each one of them, so we create a loop on lines 57-72 to handle this. First,
we move them. Our enemy spaceships aren’t that sophisticated when
they move: they’re hell-bent on our destruction, so they fly straight
at us in order to take a potshot. Next, the enemy spaceships will try to
take a shot at us. Why ‘try’? Well, our enemies are being controlled by
Python, which can fire a great deal quicker than you can. tryToFire()
is called once per ship in every loop and gives our enemy a 1/100 chance
of getting off a shot. That might sound like pretty slim odds for firing at
all! But remember, our loop is run 60 times a second, which means that
there’s a roughly 50-50 chance each enemy will fire a shot every two
seconds, so we need to keep our wits about us.

Unlike our valiant spaceship there
are many, many enemy spaceships

123

ESSENTIALS

[Chapter One]123 [Chapter Nine]

Lines 60-61 are where we check whether any shots our enemies have
fired have hit us, and whether any shots we’ve fired have hit our enemies.
The checkForHit function call does a couple of things. We pass through
the thing we want to check that we hit; if we did, our code in ships.py on
lines 48-49 will figure that out. If we did hit the enemy, or vice versa, our
checkForHit function will call the registerHit() function on the object
that we hit, which decreases the health value of our target. Our enemies
have one life, whereas we have five. At the end of our checkForHit()
function, we return True if the health of the ship is 0; that way, if our
shipIsDestroyed == True or our enemyIsDestroyed == True, we can
end the game or remove the enemy from our game.

Rather than removing our enemy straight away, we add its index in the
enemyShips list to the enemiesToRemove list. Once we’ve worked out all
of the enemies we need to delete, we iterate through the indexes in the
enemiesToRemove list and delete them one at a time on lines 74-75.

Drawing our game
As noted previously, the drawGame() function is much
smaller than the updateGame() one. This is because updateGame() has
done all of the hard work for us. We don’t need to worry about moving
anything here: everything which needs to be updated, like positions and
health, has already been taken care of before we get to drawGame().

The first thing we draw with the latter is the background, because
we want everything else to be drawn on top of it. We only have a single
player spaceship, so we’ll draw that first and then we’ll draw all of
the bullets that we’ve fired so far on lines 79-80. Next, we’ll draw our
enemies. Again, we’ll do this in a loop because there’s the possibility of
there being more than one enemy, and we’ll draw the bullets that each
ship fires too. It wouldn’t be much of an armada if there was only one
enemy ship.

What next?
That’s the first half of our game. We don’t have much in the way of a
game-over screen, so we’ll cover making one in our final chapter. We’ll
program a UI for our health, add shields to our ships, and include some
explosion effects when either our own ship or an enemy ship is destroyed.
We’ll also write some code that will create levels (waves) that you can
customise to make each game behave any way you like.

124

 [MAKE GAMES WITH PYTHON]

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

import pygame, sys, random, math
import pygame.locals as GAME_GLOBALS
import pygame.event as GAME_EVENTS
import pygame.time as GAME_TIME
import ships

windowWidth = 1024
windowHeight = 614

pygame.init()
pygame.font.init()
surface = pygame.display.set_mode((windowWidth, windowHeight))

pygame.display.set_caption(‘Alien\’s Are Gonna Kill Me!’)
textFont = pygame.font.SysFont(“monospace”, 50)

gameStarted = False
gameStartedTime = 0
gameFinishedTime = 0
gameOver = False

Mouse variables
mousePosition = (0,0)
mouseStates = None
mouseDown = False

Image variables
startScreen = pygame.image.load(“assets/start_screen.png”)
background = pygame.image.load(“assets/background.png”)

Ships
ship = ships.Player(windowWidth / 2, windowHeight, pygame, surface)
enemyShips = []

lastEnemyCreated = 0
enemyInterval = random.randint(1000, 2500)

Sound setup
pygame.mixer.init()

def updateGame():

 global mouseDown, gameOver

 [MAKE GAMES WITH PYTHON]

[The Aliens are trying to kill me]

Aliens.py Download
magpi.cc/
1jQlptg

http://magpi.cc/1jQlptg

125

ESSENTIALS

[Chapter One]125 [Chapter Nine]

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.

 if mouseStates[0] is 1 and mouseDown is False:
 ship.fire()
 mouseDown = True
 elif mouseStates[0] is 0 and mouseDown is True:
 mouseDown = False

 ship.setPosition(mousePosition)

 enemiesToRemove = []

 for idx, enemy in enumerate(enemyShips):

 if enemy.y < windowHeight:
 enemy.move()
 enemy.tryToFire()
 shipIsDestroyed = enemy.checkForHit(ship)
 enemyIsDestroyed = ship.checkForHit(enemy)

 if enemyIsDestroyed is True:
 enemiesToRemove.append(idx)

 if shipIsDestroyed is True:
 gameOver = True
 print “\n\n\nYou Died\n\n\n”
 quitGame()

 else:
 enemiesToRemove.append(idx)

 for idx in enemiesToRemove:
 del enemyShips[idx]

def drawGame():
 surface.blit(background, (0, 0))
 ship.draw()
 ship.drawBullets()

 for enemy in enemyShips:
 enemy.draw()
 enemy.drawBullets()

def quitGame():
 pygame.quit()
 sys.exit()

‘main’ loop
while True:

126

 [MAKE GAMES WITH PYTHON]

92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.

108.
109.
110.
111.
112.
113.
114.
115.
116.

117.
118.
119.
120.
121.
122.
123.
124.
125.
126.

127.

128.
129.
130.
131.
132.
133.
134.

 timeTick = GAME_TIME.get_ticks()
 mousePosition = pygame.mouse.get_pos()
 mouseStates = pygame.mouse.get_pressed()

 if gameStarted is True and gameOver is False:

 updateGame()
 drawGame()

 elif gameStarted is False and gameOver is False:
 surface.blit(startScreen, (0, 0))

 if mouseStates[0] is 1:

 if mousePosition[0] > 445 and mousePosition[0] < 580 and
mousePosition[1] > 450 and mousePosition[1] < 510:

 gameStarted = True

 elif mouseStates[0] is 0 and mouseDown is True:
 mouseDown = False

 elif gameStarted is True and gameOver is True:
 surface.blit(startScreen, (0, 0))
 timeLasted = (
gameFinishedTime - gameStartedTime) / 1000

 # Handle user and system events
 for event in GAME_EVENTS.get():

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:
 quitGame()

 if GAME_TIME.get_ticks()-lastEnemyCreated >enemyInterval and gameStarted is True:

 enemyShips.append(ships.Enemy(
random.randint(0, windowWidth), -60, pygame, surface, 1))
 lastEnemyCreated = GAME_TIME.get_ticks()

 if event.type == GAME_GLOBALS.QUIT:
 quitGame()

 pygame.display.update()

 [MAKE GAMES WITH PYTHON]

[The Aliens are trying to kill me]

127

ESSENTIALS

[Chapter One]127 [Chapter Nine]

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

import projectiles, random

class Player():

 x = 0
 y = 0
 firing = False
 image = None
 soundEffect = 'sounds/player_laser.wav'
 pygame = None
 surface = None
 width = 0
 height = 0
 bullets = []
 bulletImage = "assets/you_pellet.png"
 bulletSpeed = -10
 health = 5

 def loadImages(self):
 self.image = self.pygame.image.load("assets/you_ship.png")

 def draw(self):
 self.surface.blit(self.image, (self.x, self.y))

 def setPosition(self, pos):
 self.x = pos[0] - self.width / 2
 # self.y = pos[1]

 def fire(self):
 self.bullets.append(projectiles.Bullet(
self.x + self.width / 2, self.y, self.pygame, self.surface,
self.bulletSpeed, self.bulletImage))
 a = self.pygame.mixer.Sound(self.soundEffect)
 a.set_volume(0.2)
 a.play()

 def drawBullets(self):
 for b in self.bullets:
 b.move()
 b.draw()

 def registerHit(self):
 self.health -= 1

 def checkForHit(self, thingToCheckAgainst):
 bulletsToRemove = []

Ships.py Download
magpi.cc/
1jQlptg

http://magpi.cc/1jQlptg

128

 [MAKE GAMES WITH PYTHON]

47.
48.

49.

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.

 for idx, b in enumerate(self.bullets):
 if b.x > thingToCheckAgainst.x and b.x <
thingToCheckAgainst.x + thingToCheckAgainst.width:
 if b.y > thingToCheckAgainst.y and b.y <
thingToCheckAgainst.y + thingToCheckAgainst.height:
 thingToCheckAgainst.registerHit()
 bulletsToRemove.append(idx)

 for usedBullet in bulletsToRemove:
 del self.bullets[usedBullet]

 if thingToCheckAgainst.health <= 0:
 return True

 def __init__(self, x, y, pygame, surface):
 self.x = x
 self.y = y
 self.pygame = pygame
 self.surface = surface
 self.loadImages()

 dimensions = self.image.get_rect().size
 self.width = dimensions[0]
 self.height = dimensions[1]

 self.x -= self.width / 2
 self.y -= self.height + 10

class Enemy(Player):

 x = 0
 y = 0
 firing = False
 image = None
 soundEffect = 'sounds/enemy_laser.wav'
 bulletImage = "assets/them_pellet.png"
 bulletSpeed = 10
 speed = 2

 def move(self):
 self.y += self.speed

 def tryToFire(self):
 shouldFire = random.random()

 if shouldFire <= 0.01:
 self.fire()

 def loadImages(self):
 self.image = self.pygame.image.load("assets/them_ship.png")

 [MAKE GAMES WITH PYTHON]

[The Aliens are trying to kill me]

129

ESSENTIALS

[Chapter One]129 [Chapter Nine]

96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

 def __init__(self, x, y, pygame, surface, health):
 self.x = x
 self.y = y
 self.pygame = pygame
 self.surface = surface
 self.loadImages()
 self.bullets = []
 self.health = health

 dimensions = self.image.get_rect().size
 self.width = dimensions[0]
 self.height = dimensions[1]

 self.x -= self.width / 2

class Bullet():

 x = 0
 y = 0
 image = None
 pygame = None
 surface = None
 width = 0
 height = 0
 speed = 0.0

 def loadImages(self):
 self.image = self.pygame.image.load(self.image)

 def draw(self):
 self.surface.blit(self.image, (self.x, self.y))

 def move(self):
 self.y += self.speed

 def __init__(self, x, y, pygame, surface, speed, image):
 self.x = x
 self.y = y
 self.pygame = pygame
 self.surface = surface
 self.image = image
 self.loadImages()
 self.speed = speed

 dimensions = self.image.get_rect().size
 self.width = dimensions[0]
 self.height = dimensions[1]

 self.x -= self.width / 2

Projectiles.py Download
magpi.cc/
1jQlptg

http://magpi.cc/1jQlptg

130

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

ESSENTIALS

In the final chapter, we’re going to give
the space shooter game we started in
the last chapter some extra polish.

 [MAKE GAMES WITH PYTHON]

130[The Aliens Are Here & They’re Coming In Waves!]

[CHAPTER TEN]
THE ALIENS ARE
HERE & THEY’RE
COMING IN WAVES!

131

ESSENTIALS

[Chapter One]131 [Chapter Ten]

elcome to the final chapter! If you have worked this far
through the book, you can consider yourself to be quite an
expert in building games with Pygame. We are going to round

things off by adding a final polish to the space shooter game we began
in chapter nine.

If you look over the code from the previous chapter and compare
it to the code for this one, you’ll see that, despite having the same
foundations, there’s quite a bit more going on in the code this time
around. Previously, we dealt with creating a start screen, moving our
ship, firing our weapons, creating enemies, having them fire their
weapons, and then removing them from time and space whenever
we hit one another. Now, we are going to enrich our game by adding
shields to our spaceship and create a simple health/shield bar to
show their status. We’re also going to write some code that lets us
create levels and waves for our enemy spaceships to fall into, as
well as writing some logic for announcing that the next level of bad
guys are on their way. Finally, we’ll create two end screens: one
for if the aliens kill us, another for if we survive all of the levels
of the onslaught.

W

132

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

A tour at warp speed
We’ve seen most of this code before, obviously, but a good deal has
changed, so we’re going to zip through where those changes are
before we look at them in more detail.

Let’s begin by looking at the key differences in aliens.py. On line
7, we now import another file, gameLevels.py. This file contains
a list with a number of dictionaries which we’ll use to place our
enemies in the different levels of our game. It’s a big file, but it’s
not a complicated one, and we’ll take a look at it shortly.

On lines 24-29, we have some new variables. We will use
these to keep track of our game’s progress and state, as well
as changing levels.

On lines 39-42, we load a couple of extra images to use in our game;
these will be our game over and wave announcement graphics.

We’ve done away with the lastEnemyCreated variable we used
last time to generate enemies after a certain time interval. Instead,
we now have a launchWave method that will unleash a group
of enemy spaceships, based on the pattern we pass it from our
gameLevels.py file. updateGame has changed quite a bit from last
time, but that’s because we’re just making it a little better at what
it does already.

On lines 151 and 152 we now draw a bar across the bottom of our
game screen, showing our shields and health status. As either our
shields or health decrease, these bars will shrink.

In ships.py, we have not changed very much at all; we’ve just
added a tiny bit of logic that creates and draws some basic shields for
us. This will be the first thing we take a look at in detail, so we won’t
examine it here.

Finally, in projectiles.py, we’ve added a checkForHit function.
You may be wondering why we need this function in the code for our
projectiles, when we already have it in the code for our spaceship.
Well, you might have noticed in the previous game that when you
destroyed an enemy spaceship, the lasers it had fired would disappear
along with the ship. This was because each ship was responsible
for looking after and updating the bullets it had fired: if there was no
ship, there were no bullets. With this function, and a little bit of code
in aliens.py, we can give the projectiles a place to live after their ship
has been destroyed, so that they may strike our spaceship.

[QUICK TIP]

If you know how
to use a diff tool,
comparing the
aliens.py code
from chapter
ten with chapter
nine will help you
get a complete
oversight of what
we’ve changed
and why.

[The Aliens Are Here & They’re Coming In Waves!]

133

ESSENTIALS

[Chapter One]133

Full power to the forward deflector shields!
Let’s start with the simple things first: what does every spaceship
need? Obviously, it has to have energy shields to keep it safe from
cosmic dust and enemy fire alike.

Implementing shields for our ship is not partiularly difficult. We
already did most of the work already when we created health for our
ships. If you look at lines 9, 10, 21 and 22 of ships.py, you’ll see we’ve
created four new variables. shieldImage is where we’ll load the
image that we’ll use to draw our shield. This is simply a transparent
PNG which we draw over our ship when it’s been hit, to give a cool bit
of feedback to our players. drawShield is set to True whenever our
ship is hit, so we can draw the shield only when we need to instead
of the whole time. shields and maxShields are next. shields is
the current amount of shield strength we have, and maxShields is
the maximum amount of shield energy we’re allowed to have. Every
time our shields are hit, we decrease the shield energy by 1, so we can
sustain three hits to our shields before our ship starts to take damage.
To let our shields take the brunt of enemy fire before they start to
damage our ship, we’ve tweaked our register hit function inside of our
ship class. Previously, our registerHit method, when called, would
decrement (decrease by one) our health value until it was 0. Now, it
will check if we have any shield energy left; if our shield levels are
greater than 0, we’ll decrement the shield level instead of the health
level, and we’ll set our drawShield variable to True so we can draw
the shields. If our shields are at 0, then we decrease the health value

Right There are two
different types of

shield for this game:
a bubble shield, like

the USS Enterprise
has, or a shape

shield (which we
think looks cooler),
like those found in

Stargate. You can
change them by

loading the image
you prefer in the

ships class

[Chapter Ten]

134

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

just like we did before. When our ships draw() method is called,
it will check whether or not our drawShield function is True. If it
is, we must have taken a hit, so we’ll draw the shield and then set
drawShield to False so it will disappear until we’re hit again.

While we’re on the subject of shields and health, let’s look at
where we create health and shield bars. Back in aliens.py on lines
151 and 152, we draw a rectangle for our health and another for our
shields. It’s quite a long line of code, but it’s quite simple really. For
shields, we take the maximum amount possible that a shield can be
(3) and divide the width of the game window (gameWindow) by it; we
then multiply that value by the current shield level. This gives us the
width that our shield bar needs to be to show the amount of energy
we have left. If we can sustain three more hits, the bar will be full
across the width of our game screen; if it can take two hits, it will fill
two-thirds of the screen, and so on until it is empty. We do the exact
same thing for our health bar; we just don’t affect the values until our
shields are depleted.

Let’s take a look at a matrix
The biggest change in this version of our game is that we can now
define levels and formations for our enemy ships to attack us with. If
you take a look at gameLevels.py, you’ll see there is only one variable,
level. This is a dictionary that contains objects which describe our
levels. Our first level or ‘wave’ is the first dictionary, the second
level is the second dictionary, and so on. Each level dictionary has
two properties: interval and structure. Let’s take a look at the
structure property first: this is a list of lists, and in each list is a
series of 1s and 0s. Each list is
a wave. Think of structure
as a map of our game window.
The width of our game window
is represented by one list inside
of structure. For each 1 in our
list, we want to create an enemy
spaceship in corresponding
space in our game window, and
for every 0 we don’t. Using this
approach, we can define levels

Below By adjusting
patterns and
intervals, you
can make levels
completely different
from one another
with very little effort

[The Aliens Are Here & They’re Coming In Waves!]

135

ESSENTIALS

[Chapter One]135

of different difficulty and appearance, just by changing the values of
structure. For example, if we wanted to create ten ships that spanned
the width of the screen at equal intervals, we’d add a list like this to our
structure list:

[1,1,1,1,1,1,1,1,1,1]

If we wanted that row of ships to be followed by a row of six ships
with a gap in the middle, we’d add two lists to structure, one for the
first row of spaceships, and another for the second:

[1,1,1,1,1,1,1,1,1,1],
[1,1,1,0,0,0,0,1,1,1]

This structure is known as a ‘matrix’, which you can think of as a
list with an X and Y axis. If you wanted to know whether or not we
were going to create a spaceship in the second grid down from the
top of our screen and three across, you could check with levels[0].
structure[2][3], but that’s not quite how we’re using this
in our game.

The other property of our level objects is interval. This value sets
how many seconds should pass before we move on from one wave and
create the next. Tweaking this value can greatly change the difficulty of

Above A visual
representation
of how we can

determine enemy
spaceship positions

using a matrix

[Chapter Ten]

136

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

each level. For example, if you have five waves of enemies with a
five second interval between each row, you’ll have ten spaceships
being generated every five seconds that you need to destroy. That’s
quite a lot, but 50 enemies over 25 seconds is pretty easy to deal with.
However, if you create ten rows of ships and set the interval between
waves to two seconds, you’re going to be dealing with 100 ships in
20 seconds. That really is an onslaught! To illustrate this, the final
level included in gameLevels.py contains five times the number of
waves than any other level, but there is only one ship in each wave
and the interval is 0.5 seconds. This creates a zigzag pattern of ships,
which makes for interesting gameplay when you’re being fired at
by ships across both the X and Y axes. With this knowledge, you can
create a limitless variety of levels for our game; all you have to do is
copy one of the level objects, and edit the structure and interval as
you see fit. That’s much more fun than spawning enemies at random
X/Y coordinates.

Launch wave!
Now that we know how to structure our levels, how do we put them
together in our game? Back in aliens.py we have the launchWave()
function. This takes the current level and wave, and generates enemies
at the correct positions and correct time for our game. At the end of our
‘main’ loop, we have a tiny bit of code on lines 222 and 223 that checks
how long it has been since a wave of enemies has been spawned. If
more time has passed than is allowed by our interval value for the
current level we’re playing, launchWave is called.

The first thing launchWave does is create the variable thisLevel.
We don’t absolutely have to do this, but it makes what we’re trying

Just because
you’re following a
tutorial, it doesn’t
mean you have
to use all of the
resources we
provide. Why
not tweak some
of the images
to create your
own unique
spaceship? Or
mess around
with the level
structures and
ships classes to
create more than
one enemy ship?
Learning comes
from trying these
things out and
seeing how far
you get!

[QUICK TIP]

Left A visual
representation
of how we map
the matrix to the
dimensions of our
game window

[The Aliens Are Here & They’re Coming In Waves!]

137

ESSENTIALS

[Chapter One]

to do a little more obvious when we access our level structure, rather
than using gameLevels.level[currentLevel][“structure”] every
time. Next, we check that the wave we’re about to create actually exists
in our level. If our level has four waves and we try to access a fifth
one, our game will crash. If the wave we want to access does exist, we
take that wave and assign it to the thisWave value. Again, this just
makes our code a little nicer to read. We then work through the values
of that wave.

First, on line 64 of aliens.py, we check whether or not we want to
place an alien spaceship here (1) or not (0). If we do, we then do a
little bit of maths to work out where to place it. First, we divide the
windowWidth by the length of the list that makes up the wave; we
then place the ship at the X coordinates that are windowWidth / the
number of slots in the wave * the index of this ship. So, if we have ten

slots in this wave, and each one wants to have a ship created in each
slot, launchWave will create ten enemies at equal distances across the
width of the game screen. If every other slot in that ten was a 0 and
didn’t want to have a ship drawn, then five ships would be drawn at
equal intervals across the game screen.

Once launchWave has created the enemies it needs to, it lets the
game continue on its way until it is called by our main loop again. If
the next time launchWave is run, it finds that there are no more waves
in this level, it will check to see if there’s another level it can move on
to. If so, it will recharge our ship’s shields, increase the level number,
and reset the wave number to 0. New level! If launchWave finds that
it’s run out of waves to create and that there aren’t any more levels
to play, it assigns the gameWon variable to True. This is a preliminary
value, as nothing will happen until all of the enemies have been
destroyed, either by our bodacious laser blasts or by them simply flying
off the screen to their oblivion. If we survive all of the levels and aren’t
destroyed by a lucky potshot from one of our alien foes, then we’ve
won the game! Hurrah!

The first thing launchWave does is
create the variable thisLevel....

137 [Chapter Ten]

138

 [MAKE GAMES WITH PYTHON]

Other tweaks and tidbits
We mentioned earlier that we’d added a checkForHit function to
our projectiles.py Bullet class. Let’s talk about why we need this for
a moment. In a perfect world, where everyone owns a Raspberry Pi and
wants to use it exclusively for making Pygame games, every object in
a game is responsible for handling itself inside of the larger context
of the game. When a projectile hits a target, it runs all of the code it
needs to run and then removes itself from the game. Unfortunately, the
world is not an ideal place; each object in our Pygame shooter is aware
of themself and can interact with the things we tell them to, but they
can’t be responsible for removing themselves from the game when
they’re no longer useful, so we need a little bit of code that decides for
us. In chapter nine, we made each ship responsible for each bullet that
it fired; as such, each ship kept a reference to all the projectiles it had
fired in a list accessed with self.bullets. Each ship was responsible
for cleaning up its own mess, which seems like a reasonable solution.
However, this only works as long as there is a ship to clean up after
itself. But we destroy spaceships - Earth needs defending, and if nobody
else is going to do it, we’ve got to
step up - and when we destroy the
enemy spaceships, what happens
to bullets they’re responsible for?
As it stands, they get destroyed too,
which doesn’t make sense because
the bullet left the ship a long time
ago. It’s a bit like a car catching fire
in a car park because there’s a blaze
in the kitchen back home: the two
are related, but not inextricably
connected.

So how do we go about solving
this? By taking over responsibility
for orphaned projectiles, of course!
On line 48 of aliens.py, we have
leftOverBullets. This is an
empty list. When an enemy is
removed from our game (because
we’ve destroyed it or for some

Below The two
different game over
screens: one for
victory and one we
hope we never see

 [MAKE GAMES WITH PYTHON]

[The Aliens Are Here & They’re Coming In Waves!]

139

ESSENTIALS

[Chapter One]139

other reason), just before we delete the reference, and any reference
to the enemy ship’s projectiles entirely, on lines 114-117 of aliens.py
we go through the bullets array of each enemy we’re about to delete
and append a reference to each bullet to our leftOverBullets list.

Now, when we delete our enemy ship, we can still animate, move,
and update the bullets each ship has fired, by iterating through
the leftOverBullets list and checking whether or not our stray
projectiles have hit anything. This leads us back to checkForIt in the
Bullet class. With the enemy ship removed from the game, so too
is the method we were using to detect the hits. By including a simple
version in Bullet that returns True or False when a collision is or isn’t
detected, we can continue to use our game without having to change a
great deal of the logic.

As mentioned previously, we have more than one game over screen:
one for if we’re victorious against the alien scourge, and one for if
we’re not so fortunate. In order to know which one to show at the
completion of the game/demise of our ship, we have a new variable:
gameWon. This is set to True when our launchWave function works out
that there are no more waves/levels for it to create. Setting gameWon
to True is not cause to consider the game ‘won’ – even though there
are no more new enemies to create, there may still be some left over
that could destroy our player, so it’s not until both gameWon is True
and the number of enemyShips is 0 that we show the congratulations
screen. If we’re destroyed before the number of enemy ships is 0,
gameWon is set to False and gameOver is set to True, meaning we show
the loser screen.

One final note: on line 15, we have our familiar old surface statement –
except, if you compare it to previous versions, it’s got an extra argument,
pygame.FULLSCREEN. You can no doubt guess what that does!

Now, when we delete our enemy
ship, we can still animate, move and
update the bullets each ship has fired

[Chapter Ten]

140

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

levels.py

That’s all, folks!
And that’s it: we’re finished! You should now be able to go out into the
world and make simple video games using Python, a Raspberry Pi, and
Pygame. Let’s quickly go through all of the things we’ve learned over
the course of this volume. We’ve learned how to draw basic shapes; how
to use a keyboard and mouse to move, create, and delete things; we’ve
learned all about gravity (or at least, a super-simple version of it); we’ve
learned how to bounce things off of other things and how to register
things hitting one another; we’ve learned all about playing sounds and
blitting images; and tons and tons of stuff about Pygame and system
events. We’ve also learned that Python is straightforward, and ideal
for getting up and going from scratch, for beginners and experts alike.
We hope you have enjoyed learning all these new skills, and are looking
forward to putting them into practice. Have fun!

Download
magpi.cc/
1jQlwov

[The Aliens Are Here & They’re Coming In Waves!]

level = [
 {
 "structure" :[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
 "interval" : 4
 },
 {
 "structure" :[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1],

http://magpi.cc/1jQlwov

141

ESSENTIALS

[Chapter One]141

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

[Chapter Ten]

 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
 "interval" : 5
 },
 {
 "structure" :[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
 "interval" : 4
 },
 {
 "structure" :[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

142

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.

[The Aliens Are Here & They’re Coming In Waves!]

 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

143

ESSENTIALS

[Chapter One]143 [Chapter Ten]

],
 "interval" : 4
 },
 {
 "structure" :[[0, 0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
],
 "interval" : 3
 }
]

122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.

144

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.

ships.py
import projectiles, random

class Player():

 x = 0
 y = 0
 firing = False
 image = None
 shieldImage = None
 drawShield = False
 soundEffect = ‘sounds/player_laser.wav’
 pygame = None
 surface = None
 width = 0
 height = 0
 bullets = []
 bulletImage = “assets/you_pellet.png”
 bulletSpeed = -10
 health = 5
 maxHealth = health
 shields = 3
 maxShields = shields

 def loadImages(self):
 self.image = self.pygame.image.load(“assets/you_ship.png”)
 self.shieldImage = self.pygame.image.load(“assets/shield2.png”)

 def draw(self):
 self.surface.blit(self.image, (self.x, self.y))
 if self.drawShield == True:
 self.surface.blit(self.shieldImage, (self.x - 3,
self.y - 2))
 self.drawShield = False

 def setPosition(self, pos):
 self.x = pos[0] - self.width / 2

 def fire(self):
 self.bullets.append(projectiles.Bullet(self.x + self.width / 2, self.y,
self.pygame, self.surface, self.bulletSpeed, self.bulletImage))

[The Aliens Are Here & They’re Coming In Waves!]

Download
magpi.cc/
1jQlwov

http://magpi.cc/1jQlwov

145

ESSENTIALS

[Chapter One]145

38.
39.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

60.

61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.

 a = self.pygame.mixer.Sound(self.soundEffect)
 a.set_volume(0.2)
 a.play()

 def drawBullets(self):
 for b in self.bullets:
 b.move()
 b.draw()

 def registerHit(self):
 if self.shields == 0:
 self.health -= 1
 else :
 self.shields -= 1
 self.drawShield = True

 def checkForHit(self, thingToCheckAgainst):
 bulletsToRemove = []

 for idx, b in enumerate(self.bullets):
 if b.x > thingToCheckAgainst.x and b.x <
thingToCheckAgainst.x + thingToCheckAgainst.width:
 if b.y > thingToCheckAgainst.y and b.y <
thingToCheckAgainst.y + thingToCheckAgainst.height:
 thingToCheckAgainst.registerHit()
 bulletsToRemove.append(idx)
 bC = 0
 for usedBullet in bulletsToRemove:
 del self.bullets[usedBullet - bC]
 bC += 1

 if thingToCheckAgainst.health <= 0:
 return True

 def __init__(self, x, y, pygame, surface):
 self.x = x
 self.y = y
 self.pygame = pygame
 self.surface = surface
 self.loadImages()

 dimensions = self.image.get_rect().size
 self.width = dimensions[0]
 self.height = dimensions[1]

[Chapter Ten]

146

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.

 self.x -= self.width / 2
 self.y -= self.height + 10

class Enemy(Player):

 x = 0
 y = 0
 firing = False
 image = None
 soundEffect = ‘sounds/enemy_laser.wav’
 bulletImage = “assets/them_pellet.png”
 bulletSpeed = 10
 speed = 4
 shields = 0

 def move(self):
 self.y += self.speed

 def tryToFire(self):
 shouldFire = random.random()

 if shouldFire <= 0.01:
 self.fire()

 def loadImages(self):
 self.image = self.pygame.image.load(“assets/them_ship.png”)

 def __init__(self, x, y, pygame, surface, health):
 self.x = x
 self.y = y
 self.pygame = pygame
 self.surface = surface
 self.loadImages()
 self.bullets = []
 self.health = health

 dimensions = self.image.get_rect().size
 self.width = dimensions[0]
 self.height = dimensions[1]

 self.x += self.width / 2

[The Aliens Are Here & They’re Coming In Waves!]

147

ESSENTIALS

[Chapter One]147

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

aliens.py
import pygame, sys, random, math
import pygame.locals as GAME_GLOBALS
import pygame.event as GAME_EVENTS
import pygame.time as GAME_TIME
import ships

import gameLevels

windowWidth = 1024
windowHeight = 614
timeTick = 0

pygame.init()
pygame.font.init()
surface = pygame.display.set_mode((windowWidth, windowHeight),
pygame.FULLSCREEN|pygame.HWSURFACE|pygame.DOUBLEBUF)

pygame.display.set_caption(‘Alien\’s Are Gonna Kill Me!’)
textFont = pygame.font.SysFont(“monospace”, 50)

gameStarted = False
gameStartedTime = 0
gameFinishedTime = 0
gameOver = False
gameWon = False

currentLevel = 0
currentWave = 0
lastSpawn = 0
nextLevelTS = 0

Mouse variables
mousePosition = (0,0)
mouseStates = None
mouseDown = False

Image variables
startScreen = pygame.image.load(“assets/start_screen.png”)
background = pygame.image.load(“assets/background.png”)
loseScreen = pygame.image.load(“assets/lose_screen.png”)
winScreen = pygame.image.load(“assets/win_screen.png”)
nextWave = pygame.image.load(“assets/next_level.png”)
finalWave = pygame.image.load(“assets/final_level.png”)

Ships

[Chapter Ten]

Download
magpi.cc/
1jQlwov

http://magpi.cc/1jQlwov

148

 [MAKE GAMES WITH PYTHON]

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

ship = ships.Player(windowWidth / 2, windowHeight, pygame, surface)
enemyShips = []

leftOverBullets = []

Sound setup
pygame.mixer.init()

def launchWave():

 global lastSpawn, currentWave, currentLevel, gameOver, gameWon, nextLevelTS

 thisLevel = gameLevels.level[currentLevel][“structure”]

 if currentWave < len(thisLevel):

 thisWave = thisLevel[currentWave]

 for idx, enemyAtThisPosition in enumerate(thisWave):
 if enemyAtThisPosition is 1:
 enemyShips.append(ships.Enemy(((windowWidth / len(thisWave)) * idx), -60,
pygame, surface, 1))

 elif currentLevel + 1 < len(gameLevels.level) :
 currentLevel += 1
 currentWave = 0
 ship.shields = ship.maxShields
 nextLevelTS = timeTick + 5000
 else:
 gameWon = True

 lastSpawn = timeTick
 currentWave += 1

def updateGame():

 global mouseDown, gameOver, gameWon, leftOverBullets

 if mouseStates[0] is 1 and mouseDown is False:
 ship.fire()
 mouseDown = True
 elif mouseStates[0] is 0 and mouseDown is True:
 mouseDown = False

 ship.setPosition(mousePosition)

 enemiesToRemove = []

 for idx, enemy in enumerate(enemyShips):

 [MAKE GAMES WITH PYTHON]

[The Aliens Are Here & They’re Coming In Waves!]

149

ESSENTIALS

[Chapter One]149

93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.

 if enemy.y < windowHeight:
 enemy.move()
 enemy.tryToFire()
 shipIsDestroyed = enemy.checkForHit(ship)
 enemyIsDestroyed = ship.checkForHit(enemy)

 if enemyIsDestroyed is True:
 enemiesToRemove.append(idx)

 if shipIsDestroyed is True:
 gameOver = True
 gameWon = False
 return

 else:
 enemiesToRemove.append(idx)

 oC = 0

 for idx in enemiesToRemove:
 for remainingBullets in enemyShips[idx - oC].bullets:
 leftOverBullets.append(remainingBullets)

 del enemyShips[idx - oC]
 oC += 1

 oC = 0

 for idx, aBullet in enumerate(leftOverBullets):
 aBullet.move()
 hitShip = aBullet.checkForHit(ship)

 if hitShip is True or aBullet.y > windowHeight:
 del leftOverBullets[idx - oC]
 oC += 1

def drawGame():

 global leftOverBullets, nextLevelTS, timeTick, gameWon

 surface.blit(background, (0, 0))
 ship.draw()
 ship.drawBullets()

 for aBullet in leftOverBullets:
 aBullet.draw()

 healthColor = [(62, 180, 76), (180, 62, 62)]

[Chapter Ten]

150

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

142.
143.
144.
145.
146.
147.
148.
149.
150.
151.

152.

153.
154.
155.
156.
157.
158.
159.
160.
161.

162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.

 whichColor = 0

 if(ship.health <= 1):
 whichColor = 1

 for enemy in enemyShips:
 enemy.draw()
 enemy.drawBullets()

 pygame.draw.rect(
surface, healthColor[whichColor], (0, windowHeight - 5, (
windowWidth / ship.maxHealth) * ship.health, 5))
 pygame.draw.rect(surface, (62, 145, 180), (0, windowHeight - 10, (windowWidth /
ship.maxShields) * ship.shields, 5))

 if timeTick < nextLevelTS:
 if gameWon is True:
 surface.blit(finalWave, (250, 150))
 else:
 surface.blit(nextWave, (250, 150))

def restartGame():
 global gameOver, gameStart, currentLevel, currentWave, lastSpawn, nextLevelTS,
leftOverBullets, gameWon, enemyShips, ship

 gameOver = False
 gameWon = False
 currentLevel = 0
 currentWave = 0
 lastSpawn = 0
 nextLevelTS = 0
 leftOverBullets = []
 enemyShips = []
 ship.health = ship.maxHealth
 ship.shields = ship.maxShields
 ship.bullets = []

def quitGame():
 pygame.quit()
 sys.exit()

‘main’ loop
while True:
 GAME_TIME.Clock().tick(30)
 timeTick = GAME_TIME.get_ticks()
 mousePosition = pygame.mouse.get_pos()
 mouseStates = pygame.mouse.get_pressed()

 if gameStarted is True and gameOver is False:

[The Aliens Are Here & They’re Coming In Waves!]

151

ESSENTIALS

[Chapter One]151

187.
188.
189.
190.
191.
192.
193.
194.
195.
196.

197.
198.
199.
200.
201.
202.
203.

204.
205.
206.
207.

208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.

220.
221.
222.

223.
224.
225.
226.
227.
228.

 updateGame()
 drawGame()

 elif gameStarted is False and gameOver is False:
 surface.blit(startScreen, (0, 0))

 if mouseStates[0] is 1:

 if mousePosition[0] > 445 and mousePosition[0] < 580 and
mousePosition[1] > 450 and mousePosition[1] < 510:
 pygame.mouse.set_visible(False)
 gameStarted = True

 elif mouseStates[0] is 0 and mouseDown is True:
 mouseDown = False

 elif gameStarted is True and gameOver is True and gameWon is
False:
 surface.blit(loseScreen, (0, 0))
 timeLasted = (gameFinishedTime - gameStartedTime) / 1000

 if gameStarted is True and gameWon is True and len(enemyShips)
is 0:
 surface.blit(winScreen, (0, 0))

 # Handle user and system events
 for event in GAME_EVENTS.get():

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:
 quitGame()

 if event.key == pygame.K_SPACE:
 if gameStarted is True and gameOver is True or
gameStarted is True and gameWon is True:
 restartGame()

 if timeTick - lastSpawn > gameLevels.level[currentLevel][
“interval”] * 1000 and gameStarted is True and gameOver is
False:
 launchWave()

 if event.type == GAME_GLOBALS.QUIT:
 quitGame()

 pygame.display.update()

[Chapter Ten]

152

 [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON] [MAKE GAMES WITH PYTHON]

152[The Aliens Are Here & They’re Coming In Waves!]

projectiles.py
class Bullet():

 x = 0
 y = 0
 image = None
 pygame = None
 surface = None
 width = 0
 height = 0
 speed = 0.0

 def loadImages(self):
 self.image = self.pygame.image.load(self.image)

 def draw(self):
 self.surface.blit(self.image, (self.x, self.y))

 def move(self):
 self.y += self.speed

 def checkForHit(self, thingToCheckAgainst):
 if self.x > thingToCheckAgainst.x and self.x <
thingToCheckAgainst.x + thingToCheckAgainst.width:
 if self.y > thingToCheckAgainst.y and self.y <
thingToCheckAgainst.y + thingToCheckAgainst.height:
 thingToCheckAgainst.registerHit()
 return True

 return False

 def __init__(self, x, y, pygame, surface, speed,
image):
 self.x = x
 self.y = y
 self.pygame = pygame
 self.surface = surface
 self.image = image
 self.loadImages()
 self.speed = speed

 dimensions = self.image.get_rect().size
 self.width = dimensions[0]
 self.height = dimensions[1]

 self.x -= self.width / 2

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

Download
magpi.cc/
1jQlwov

http://magpi.cc/1jQlwov

ESSENTIALS

CONQUER

TH
E COMMAND

LINE
The Raspberry Pi

TERMINAL GUIDE
Written by Richard Smedley

24 25

 [CONQUER THE COMMAND LINE]

[Chapter One] [Customise the Command Line]24 [Chapter Five]

[CHAPTER FIVE]
CUSTOMISE THE
COMMAND LINE

Richard Smedley presents your cut-out-and-keep
guide to using the command line on the Raspberry Pi.
In part 5, we make Raspbian a little more personal as
we get it to behave and look just the way you want it…

ESSENTIALS

pi@raspberrypi ~ $

.

New user

sudo

T

Share your Pi:
make new user

accounts and
others can log

in or switch
users from a

command-line
session

The command-
line ‘environment’
is personal to
each user. You
can change your
identity with or
without a change
of environment,
depending upon
what you need to
do in another role

LEARN TO LOVE THE
COMMAND
LINE Get started today for

just £2.99 / $3.99

ESSENTIALS

From the makers of the
official Raspberry Pi magazine

magpi.cc/Essentials-Bash

153

Find it on

digital app

http://https://itunes.apple.com/us/app/the-magpi-magazine/id972033560?ls=1&mt=8
http://https://play.google.com/store/apps/details?id=com.raspberry.magpi
http://magpi.cc/Essentials-Bash

ESSENTIALS

raspberrypi.org/magpi

http://raspberrypi.org/magpi

